Inequality on integer fractions
module elementary-number-theory.inequality-integer-fractions where
Imports
open import elementary-number-theory.inequality-integers open import elementary-number-theory.integer-fractions open import elementary-number-theory.multiplication-integers open import foundation.dependent-pair-types open import foundation.propositions open import foundation.universe-levels
Idea
A fraction m/n
is less (or equal) to a fraction m'/n'
iff m * n'
is less
(or equal) to m' * n
.
Definition
Inequality of integer fractions
leq-fraction-ℤ-Prop : fraction-ℤ → fraction-ℤ → Prop lzero leq-fraction-ℤ-Prop (m , n , p) (m' , n' , p') = leq-ℤ-Prop (m *ℤ n') (m' *ℤ n) leq-fraction-ℤ : fraction-ℤ → fraction-ℤ → UU lzero leq-fraction-ℤ x y = type-Prop (leq-fraction-ℤ-Prop x y) is-prop-leq-fraction-ℤ : (x y : fraction-ℤ) → is-prop (leq-fraction-ℤ x y) is-prop-leq-fraction-ℤ x y = is-prop-type-Prop (leq-fraction-ℤ-Prop x y)
Strict inequality of integer fractions
le-fraction-ℤ-Prop : fraction-ℤ → fraction-ℤ → Prop lzero le-fraction-ℤ-Prop (m , n , p) (m' , n' , p') = le-ℤ-Prop (m *ℤ n') (m' *ℤ n) le-fraction-ℤ : fraction-ℤ → fraction-ℤ → UU lzero le-fraction-ℤ x y = type-Prop (le-fraction-ℤ-Prop x y) is-prop-le-fraction-ℤ : (x y : fraction-ℤ) → is-prop (le-fraction-ℤ x y) is-prop-le-fraction-ℤ x y = is-prop-type-Prop (le-fraction-ℤ-Prop x y)