The interval
module synthetic-homotopy-theory.interval-type where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.identity-types open import foundation.structure-identity-principle open import foundation.universe-levels
Idea
The interval type is a higher inductive type with two points and an identification between them.
Postulates
postulate 𝕀 : UU lzero source-𝕀 : 𝕀 target-𝕀 : 𝕀 path-𝕀 : Id source-𝕀 target-𝕀 ind-𝕀 : {l : Level} (P : 𝕀 → UU l) (u : P source-𝕀) (v : P target-𝕀) (q : Id (tr P path-𝕀 u) v) → (x : 𝕀) → P x compute-source-𝕀 : {l : Level} {P : 𝕀 → UU l} (u : P source-𝕀) (v : P target-𝕀) (q : Id (tr P path-𝕀 u) v) → Id (ind-𝕀 P u v q source-𝕀) u compute-target-𝕀 : {l : Level} {P : 𝕀 → UU l} (u : P source-𝕀) (v : P target-𝕀) (q : Id (tr P path-𝕀 u) v) → Id (ind-𝕀 P u v q target-𝕀) v compute-path-𝕀 : {l : Level} {P : 𝕀 → UU l} (u : P source-𝕀) (v : P target-𝕀) (q : Id (tr P path-𝕀 u) v) → Id ( apd (ind-𝕀 P u v q) path-𝕀 ∙ compute-target-𝕀 u v q) ( ap (tr P path-𝕀) (compute-source-𝕀 u v q) ∙ q)
Properties
The data that is used to apply the inductiopn principle of the interval
Data-𝕀 : {l : Level} → (𝕀 → UU l) → UU l Data-𝕀 P = Σ (P source-𝕀) (λ u → Σ (P target-𝕀) (λ v → Id (tr P path-𝕀 u) v)) ev-𝕀 : {l : Level} {P : 𝕀 → UU l} → ((x : 𝕀) → P x) → Data-𝕀 P ev-𝕀 f = triple (f source-𝕀) (f target-𝕀) (apd f path-𝕀) module _ {l : Level} {P : 𝕀 → UU l} where Eq-Data-𝕀 : (x y : Data-𝕀 P) → UU l Eq-Data-𝕀 x y = Σ ( Id (pr1 x) (pr1 y)) (λ α → Σ ( Id (pr1 (pr2 x)) (pr1 (pr2 y))) (λ β → Id ( pr2 (pr2 x) ∙ β) ( (ap (tr P path-𝕀) α) ∙ pr2 (pr2 y)))) extensionality-Data-𝕀 : (x y : Data-𝕀 P) → Id x y ≃ Eq-Data-𝕀 x y extensionality-Data-𝕀 (pair u (pair v α)) = extensionality-Σ ( λ {u'} vα' p → Σ (Id v (pr1 vα')) (λ q → Id (α ∙ q) (ap (tr P path-𝕀) p ∙ pr2 vα'))) ( refl) ( pair refl right-unit) ( λ u' → id-equiv) ( extensionality-Σ ( λ {v'} α' q → Id (α ∙ q) α') ( refl) ( right-unit) ( λ v' → id-equiv) ( λ γ → equiv-concat right-unit γ)) refl-Eq-Data-𝕀 : (x : Data-𝕀 P) → Eq-Data-𝕀 x x refl-Eq-Data-𝕀 x = triple refl refl right-unit Eq-eq-Data-𝕀 : {x y : Data-𝕀 P} → Id x y → Eq-Data-𝕀 x y Eq-eq-Data-𝕀 {x = x} refl = refl-Eq-Data-𝕀 x eq-Eq-Data-𝕀' : {x y : Data-𝕀 P} → Eq-Data-𝕀 x y → Id x y eq-Eq-Data-𝕀' {x} {y} = map-inv-equiv (extensionality-Data-𝕀 x y) eq-Eq-Data-𝕀 : {x y : Data-𝕀 P} (α : Id (pr1 x) (pr1 y)) (β : Id (pr1 (pr2 x)) (pr1 (pr2 y))) (γ : Id (pr2 (pr2 x) ∙ β) (ap (tr P path-𝕀) α ∙ pr2 (pr2 y))) → Id x y eq-Eq-Data-𝕀 α β γ = eq-Eq-Data-𝕀' (triple α β γ)
The interval is contractible
inv-ev-𝕀 : {l : Level} {P : 𝕀 → UU l} → Data-𝕀 P → (x : 𝕀) → P x inv-ev-𝕀 x = ind-𝕀 _ (pr1 x) (pr1 (pr2 x)) (pr2 (pr2 x)) issec-inv-ev-𝕀 : {l : Level} {P : 𝕀 → UU l} (x : Data-𝕀 P) → ev-𝕀 (inv-ev-𝕀 x) = x issec-inv-ev-𝕀 (pair u (pair v q)) = eq-Eq-Data-𝕀 ( compute-source-𝕀 u v q) ( compute-target-𝕀 u v q) ( compute-path-𝕀 u v q) tr-value : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (f g : (x : A) → B x) {x y : A} (p : Id x y) (q : Id (f x) (g x)) (r : Id (f y) (g y)) → Id (apd f p ∙ r) (ap (tr B p) q ∙ apd g p) → Id (tr (λ x → Id (f x) (g x)) p q) r tr-value f g refl q r s = (inv (ap-id q) ∙ inv right-unit) ∙ inv s isretr-inv-ev-𝕀 : {l : Level} {P : 𝕀 → UU l} (f : (x : 𝕀) → P x) → Id (inv-ev-𝕀 (ev-𝕀 f)) f isretr-inv-ev-𝕀 {l} {P} f = eq-htpy ( ind-𝕀 ( λ x → Id (inv-ev-𝕀 (ev-𝕀 f) x) (f x)) ( compute-source-𝕀 (f source-𝕀) (f target-𝕀) (apd f path-𝕀)) ( compute-target-𝕀 (f source-𝕀) (f target-𝕀) (apd f path-𝕀)) ( tr-value (inv-ev-𝕀 (ev-𝕀 f)) f path-𝕀 ( compute-source-𝕀 (f source-𝕀) (f target-𝕀) (apd f path-𝕀)) ( compute-target-𝕀 (f source-𝕀) (f target-𝕀) (apd f path-𝕀)) ( compute-path-𝕀 (f source-𝕀) (f target-𝕀) (apd f path-𝕀)))) abstract is-equiv-ev-𝕀 : {l : Level} (P : 𝕀 → UU l) → is-equiv (ev-𝕀 {P = P}) is-equiv-ev-𝕀 P = is-equiv-has-inverse inv-ev-𝕀 issec-inv-ev-𝕀 isretr-inv-ev-𝕀 tr-eq : {l : Level} {A : UU l} {x y : A} (p : Id x y) → Id (tr (Id x) p refl) p tr-eq refl = refl contraction-𝕀 : (x : 𝕀) → Id source-𝕀 x contraction-𝕀 = ind-𝕀 ( Id source-𝕀) ( refl) ( path-𝕀) ( tr-eq path-𝕀) abstract is-contr-𝕀 : is-contr 𝕀 pr1 is-contr-𝕀 = source-𝕀 pr2 is-contr-𝕀 = contraction-𝕀