Equivalences of concrete groups
module group-theory.equivalences-concrete-groups where
Imports
open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.sets open import foundation.subtype-identity-principle open import foundation.universe-levels open import group-theory.concrete-groups open import higher-group-theory.equivalences-higher-groups open import higher-group-theory.higher-groups
Idea
An equivalence of concrete groups consists of a pointed equivalence between their classifying types
Definition
Equivalences of concrete groups
equiv-Concrete-Group : {l1 l2 : Level} (G : Concrete-Group l1) (H : Concrete-Group l2) → UU (l1 ⊔ l2) equiv-Concrete-Group G H = equiv-∞-Group (∞-group-Concrete-Group G) (∞-group-Concrete-Group H)
The identity equivalence of a concrete group
id-equiv-Concrete-Group : {l : Level} (G : Concrete-Group l) → equiv-Concrete-Group G G id-equiv-Concrete-Group G = id-equiv-∞-Group (∞-group-Concrete-Group G)
Properties
Characterization of equality in the type of concrete groups
module _ {l : Level} (G : Concrete-Group l) where is-contr-total-equiv-Concrete-Group : is-contr (Σ (Concrete-Group l) (equiv-Concrete-Group G)) is-contr-total-equiv-Concrete-Group = is-contr-total-Eq-subtype ( is-contr-total-equiv-∞-Group (∞-group-Concrete-Group G)) ( λ H → is-prop-is-set (type-∞-Group H)) ( ∞-group-Concrete-Group G) ( id-equiv-∞-Group (∞-group-Concrete-Group G)) ( is-set-type-Concrete-Group G) equiv-eq-Concrete-Group : (H : Concrete-Group l) → (G = H) → equiv-Concrete-Group G H equiv-eq-Concrete-Group .G refl = id-equiv-Concrete-Group G is-equiv-equiv-eq-Concrete-Group : (H : Concrete-Group l) → is-equiv (equiv-eq-Concrete-Group H) is-equiv-equiv-eq-Concrete-Group = fundamental-theorem-id is-contr-total-equiv-Concrete-Group equiv-eq-Concrete-Group extensionality-Concrete-Group : (H : Concrete-Group l) → (G = H) ≃ equiv-Concrete-Group G H pr1 (extensionality-Concrete-Group H) = equiv-eq-Concrete-Group H pr2 (extensionality-Concrete-Group H) = is-equiv-equiv-eq-Concrete-Group H eq-equiv-Concrete-Group : (H : Concrete-Group l) → equiv-Concrete-Group G H → G = H eq-equiv-Concrete-Group H = map-inv-equiv (extensionality-Concrete-Group H)