Initial objects of a precategory
module category-theory.initial-objects-precategories where
Imports
open import category-theory.precategories open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.identity-types
Idea
The initial object of a precategory (if it exists) is an object with the universal property that there is a unique morphism from it to any object.
Definition
initial-object-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → UU (l1 ⊔ l2) initial-object-Precategory C = Σ (obj-Precategory C) λ i → (x : obj-Precategory C) → is-contr (type-hom-Precategory C i x) module _ {l1 l2 : Level} (C : Precategory l1 l2) (i : initial-object-Precategory C) where object-initial-object-Precategory : obj-Precategory C object-initial-object-Precategory = pr1 i morphism-initial-object-Precategory : (x : obj-Precategory C) → type-hom-Precategory C object-initial-object-Precategory x morphism-initial-object-Precategory x = pr1 (pr2 i x) is-unique-morphism-initial-object-Precategory : (x : obj-Precategory C) (f : type-hom-Precategory C object-initial-object-Precategory x) → morphism-initial-object-Precategory x = f is-unique-morphism-initial-object-Precategory x = pr2 (pr2 i x)