Dependent products of commutative rings

module commutative-algebra.dependent-products-commutative-rings where
Imports
open import commutative-algebra.commutative-rings

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.sets
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.commutative-monoids
open import group-theory.dependent-products-commutative-monoids

open import ring-theory.dependent-products-rings
open import ring-theory.rings

Idea

Given a family of commutative rings A i indexed by i : I, their dependent product Π(i:I), A i is again a commutative ring.

Definition

module _
  {l1 l2 : Level} (I : UU l1) (A : I  Commutative-Ring l2)
  where

  ring-Π-Commutative-Ring : Ring (l1  l2)
  ring-Π-Commutative-Ring = Π-Ring I  i  ring-Commutative-Ring (A i))

  ab-Π-Commutative-Ring : Ab (l1  l2)
  ab-Π-Commutative-Ring = ab-Ring ring-Π-Commutative-Ring

  multiplicative-commutative-monoid-Π-Commutative-Ring :
    Commutative-Monoid (l1  l2)
  multiplicative-commutative-monoid-Π-Commutative-Ring =
    Π-Commutative-Monoid I
      ( λ i  multiplicative-commutative-monoid-Commutative-Ring (A i))

  set-Π-Commutative-Ring : Set (l1  l2)
  set-Π-Commutative-Ring = set-Ring ring-Π-Commutative-Ring

  type-Π-Commutative-Ring : UU (l1  l2)
  type-Π-Commutative-Ring = type-Ring ring-Π-Commutative-Ring

  is-set-type-Π-Commutative-Ring : is-set type-Π-Commutative-Ring
  is-set-type-Π-Commutative-Ring =
    is-set-type-Ring ring-Π-Commutative-Ring

  add-Π-Commutative-Ring :
    type-Π-Commutative-Ring  type-Π-Commutative-Ring 
    type-Π-Commutative-Ring
  add-Π-Commutative-Ring = add-Ring ring-Π-Commutative-Ring

  zero-Π-Commutative-Ring : type-Π-Commutative-Ring
  zero-Π-Commutative-Ring = zero-Ring ring-Π-Commutative-Ring

  associative-add-Π-Commutative-Ring :
    (x y z : type-Π-Commutative-Ring) 
    add-Π-Commutative-Ring (add-Π-Commutative-Ring x y) z 
    add-Π-Commutative-Ring x (add-Π-Commutative-Ring y z)
  associative-add-Π-Commutative-Ring =
    associative-add-Ring ring-Π-Commutative-Ring

  left-unit-law-add-Π-Commutative-Ring :
    (x : type-Π-Commutative-Ring) 
    add-Π-Commutative-Ring zero-Π-Commutative-Ring x  x
  left-unit-law-add-Π-Commutative-Ring =
    left-unit-law-add-Ring ring-Π-Commutative-Ring

  right-unit-law-add-Π-Commutative-Ring :
    (x : type-Π-Commutative-Ring) 
    add-Π-Commutative-Ring x zero-Π-Commutative-Ring  x
  right-unit-law-add-Π-Commutative-Ring =
    right-unit-law-add-Ring ring-Π-Commutative-Ring

  commutative-add-Π-Commutative-Ring :
    (x y : type-Π-Commutative-Ring) 
    add-Π-Commutative-Ring x y  add-Π-Commutative-Ring y x
  commutative-add-Π-Commutative-Ring =
    commutative-add-Ring ring-Π-Commutative-Ring

  mul-Π-Commutative-Ring :
    type-Π-Commutative-Ring  type-Π-Commutative-Ring 
    type-Π-Commutative-Ring
  mul-Π-Commutative-Ring =
    mul-Ring ring-Π-Commutative-Ring

  one-Π-Commutative-Ring : type-Π-Commutative-Ring
  one-Π-Commutative-Ring =
    one-Ring ring-Π-Commutative-Ring

  associative-mul-Π-Commutative-Ring :
    (x y z : type-Π-Commutative-Ring) 
    mul-Π-Commutative-Ring (mul-Π-Commutative-Ring x y) z 
    mul-Π-Commutative-Ring x (mul-Π-Commutative-Ring y z)
  associative-mul-Π-Commutative-Ring =
    associative-mul-Ring ring-Π-Commutative-Ring

  left-unit-law-mul-Π-Commutative-Ring :
    (x : type-Π-Commutative-Ring) 
    mul-Π-Commutative-Ring one-Π-Commutative-Ring x  x
  left-unit-law-mul-Π-Commutative-Ring =
    left-unit-law-mul-Ring ring-Π-Commutative-Ring

  right-unit-law-mul-Π-Commutative-Ring :
    (x : type-Π-Commutative-Ring) 
    mul-Π-Commutative-Ring x one-Π-Commutative-Ring  x
  right-unit-law-mul-Π-Commutative-Ring =
    right-unit-law-mul-Ring ring-Π-Commutative-Ring

  left-distributive-mul-add-Π-Commutative-Ring :
    (f g h : type-Π-Commutative-Ring) 
    mul-Π-Commutative-Ring f (add-Π-Commutative-Ring g h) 
    add-Π-Commutative-Ring
      ( mul-Π-Commutative-Ring f g)
      ( mul-Π-Commutative-Ring f h)
  left-distributive-mul-add-Π-Commutative-Ring =
    left-distributive-mul-add-Ring ring-Π-Commutative-Ring

  right-distributive-mul-add-Π-Commutative-Ring :
    (f g h : type-Π-Commutative-Ring) 
    mul-Π-Commutative-Ring (add-Π-Commutative-Ring f g) h 
    add-Π-Commutative-Ring
      ( mul-Π-Commutative-Ring f h)
      ( mul-Π-Commutative-Ring g h)
  right-distributive-mul-add-Π-Commutative-Ring =
    right-distributive-mul-add-Ring ring-Π-Commutative-Ring

  left-zero-law-mul-Π-Commutative-Ring :
    (f : type-Π-Commutative-Ring) 
    mul-Π-Commutative-Ring zero-Π-Commutative-Ring f 
    zero-Π-Commutative-Ring
  left-zero-law-mul-Π-Commutative-Ring =
    left-zero-law-mul-Ring ring-Π-Commutative-Ring

  right-zero-law-mul-Π-Commutative-Ring :
    (f : type-Π-Commutative-Ring) 
    mul-Π-Commutative-Ring f zero-Π-Commutative-Ring 
    zero-Π-Commutative-Ring
  right-zero-law-mul-Π-Commutative-Ring =
    right-zero-law-mul-Ring ring-Π-Commutative-Ring

  commutative-mul-Π-Commutative-Ring :
    (f g : type-Π-Commutative-Ring) 
    mul-Π-Commutative-Ring f g  mul-Π-Commutative-Ring g f
  commutative-mul-Π-Commutative-Ring =
    commutative-mul-Commutative-Monoid
      multiplicative-commutative-monoid-Π-Commutative-Ring

  Π-Commutative-Ring : Commutative-Ring (l1  l2)
  pr1 Π-Commutative-Ring = ring-Π-Commutative-Ring
  pr2 Π-Commutative-Ring = commutative-mul-Π-Commutative-Ring