Dependent products of commutative rings
module commutative-algebra.dependent-products-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.commutative-monoids open import group-theory.dependent-products-commutative-monoids open import ring-theory.dependent-products-rings open import ring-theory.rings
Idea
Given a family of commutative rings A i
indexed by i : I
, their dependent
product Π(i:I), A i
is again a commutative ring.
Definition
module _ {l1 l2 : Level} (I : UU l1) (A : I → Commutative-Ring l2) where ring-Π-Commutative-Ring : Ring (l1 ⊔ l2) ring-Π-Commutative-Ring = Π-Ring I (λ i → ring-Commutative-Ring (A i)) ab-Π-Commutative-Ring : Ab (l1 ⊔ l2) ab-Π-Commutative-Ring = ab-Ring ring-Π-Commutative-Ring multiplicative-commutative-monoid-Π-Commutative-Ring : Commutative-Monoid (l1 ⊔ l2) multiplicative-commutative-monoid-Π-Commutative-Ring = Π-Commutative-Monoid I ( λ i → multiplicative-commutative-monoid-Commutative-Ring (A i)) set-Π-Commutative-Ring : Set (l1 ⊔ l2) set-Π-Commutative-Ring = set-Ring ring-Π-Commutative-Ring type-Π-Commutative-Ring : UU (l1 ⊔ l2) type-Π-Commutative-Ring = type-Ring ring-Π-Commutative-Ring is-set-type-Π-Commutative-Ring : is-set type-Π-Commutative-Ring is-set-type-Π-Commutative-Ring = is-set-type-Ring ring-Π-Commutative-Ring add-Π-Commutative-Ring : type-Π-Commutative-Ring → type-Π-Commutative-Ring → type-Π-Commutative-Ring add-Π-Commutative-Ring = add-Ring ring-Π-Commutative-Ring zero-Π-Commutative-Ring : type-Π-Commutative-Ring zero-Π-Commutative-Ring = zero-Ring ring-Π-Commutative-Ring associative-add-Π-Commutative-Ring : (x y z : type-Π-Commutative-Ring) → add-Π-Commutative-Ring (add-Π-Commutative-Ring x y) z = add-Π-Commutative-Ring x (add-Π-Commutative-Ring y z) associative-add-Π-Commutative-Ring = associative-add-Ring ring-Π-Commutative-Ring left-unit-law-add-Π-Commutative-Ring : (x : type-Π-Commutative-Ring) → add-Π-Commutative-Ring zero-Π-Commutative-Ring x = x left-unit-law-add-Π-Commutative-Ring = left-unit-law-add-Ring ring-Π-Commutative-Ring right-unit-law-add-Π-Commutative-Ring : (x : type-Π-Commutative-Ring) → add-Π-Commutative-Ring x zero-Π-Commutative-Ring = x right-unit-law-add-Π-Commutative-Ring = right-unit-law-add-Ring ring-Π-Commutative-Ring commutative-add-Π-Commutative-Ring : (x y : type-Π-Commutative-Ring) → add-Π-Commutative-Ring x y = add-Π-Commutative-Ring y x commutative-add-Π-Commutative-Ring = commutative-add-Ring ring-Π-Commutative-Ring mul-Π-Commutative-Ring : type-Π-Commutative-Ring → type-Π-Commutative-Ring → type-Π-Commutative-Ring mul-Π-Commutative-Ring = mul-Ring ring-Π-Commutative-Ring one-Π-Commutative-Ring : type-Π-Commutative-Ring one-Π-Commutative-Ring = one-Ring ring-Π-Commutative-Ring associative-mul-Π-Commutative-Ring : (x y z : type-Π-Commutative-Ring) → mul-Π-Commutative-Ring (mul-Π-Commutative-Ring x y) z = mul-Π-Commutative-Ring x (mul-Π-Commutative-Ring y z) associative-mul-Π-Commutative-Ring = associative-mul-Ring ring-Π-Commutative-Ring left-unit-law-mul-Π-Commutative-Ring : (x : type-Π-Commutative-Ring) → mul-Π-Commutative-Ring one-Π-Commutative-Ring x = x left-unit-law-mul-Π-Commutative-Ring = left-unit-law-mul-Ring ring-Π-Commutative-Ring right-unit-law-mul-Π-Commutative-Ring : (x : type-Π-Commutative-Ring) → mul-Π-Commutative-Ring x one-Π-Commutative-Ring = x right-unit-law-mul-Π-Commutative-Ring = right-unit-law-mul-Ring ring-Π-Commutative-Ring left-distributive-mul-add-Π-Commutative-Ring : (f g h : type-Π-Commutative-Ring) → mul-Π-Commutative-Ring f (add-Π-Commutative-Ring g h) = add-Π-Commutative-Ring ( mul-Π-Commutative-Ring f g) ( mul-Π-Commutative-Ring f h) left-distributive-mul-add-Π-Commutative-Ring = left-distributive-mul-add-Ring ring-Π-Commutative-Ring right-distributive-mul-add-Π-Commutative-Ring : (f g h : type-Π-Commutative-Ring) → mul-Π-Commutative-Ring (add-Π-Commutative-Ring f g) h = add-Π-Commutative-Ring ( mul-Π-Commutative-Ring f h) ( mul-Π-Commutative-Ring g h) right-distributive-mul-add-Π-Commutative-Ring = right-distributive-mul-add-Ring ring-Π-Commutative-Ring left-zero-law-mul-Π-Commutative-Ring : (f : type-Π-Commutative-Ring) → mul-Π-Commutative-Ring zero-Π-Commutative-Ring f = zero-Π-Commutative-Ring left-zero-law-mul-Π-Commutative-Ring = left-zero-law-mul-Ring ring-Π-Commutative-Ring right-zero-law-mul-Π-Commutative-Ring : (f : type-Π-Commutative-Ring) → mul-Π-Commutative-Ring f zero-Π-Commutative-Ring = zero-Π-Commutative-Ring right-zero-law-mul-Π-Commutative-Ring = right-zero-law-mul-Ring ring-Π-Commutative-Ring commutative-mul-Π-Commutative-Ring : (f g : type-Π-Commutative-Ring) → mul-Π-Commutative-Ring f g = mul-Π-Commutative-Ring g f commutative-mul-Π-Commutative-Ring = commutative-mul-Commutative-Monoid multiplicative-commutative-monoid-Π-Commutative-Ring Π-Commutative-Ring : Commutative-Ring (l1 ⊔ l2) pr1 Π-Commutative-Ring = ring-Π-Commutative-Ring pr2 Π-Commutative-Ring = commutative-mul-Π-Commutative-Ring