The precategory of commutative semirings
module commutative-algebra.precategory-of-commutative-semirings where
Imports
open import category-theory.large-precategories open import category-theory.precategories open import commutative-algebra.commutative-semirings open import commutative-algebra.homomorphisms-commutative-semirings open import foundation.universe-levels
Idea
The precategory of commutative semirings consists of commutative semirings and homomorphisms of semirings.
Definitions
The large precategory of commutative semirings
Commutative-Semiring-Large-Precategory : Large-Precategory lsuc _⊔_ obj-Large-Precategory Commutative-Semiring-Large-Precategory = Commutative-Semiring hom-Large-Precategory Commutative-Semiring-Large-Precategory = hom-Commutative-Semiring comp-hom-Large-Precategory Commutative-Semiring-Large-Precategory {X = A} {B} {C} = comp-hom-Commutative-Semiring A B C id-hom-Large-Precategory Commutative-Semiring-Large-Precategory {X = A} = id-hom-Commutative-Semiring A associative-comp-hom-Large-Precategory Commutative-Semiring-Large-Precategory {X = A} {B} {C} {D} = associative-comp-hom-Commutative-Semiring A B C D left-unit-law-comp-hom-Large-Precategory Commutative-Semiring-Large-Precategory {X = A} {B} = left-unit-law-comp-hom-Commutative-Semiring A B right-unit-law-comp-hom-Large-Precategory Commutative-Semiring-Large-Precategory {X = A} {B} = right-unit-law-comp-hom-Commutative-Semiring A B
The precategory of commutative semirings of universe level l
Commutative-Semiring-Precategory : (l : Level) → Precategory (lsuc l) l Commutative-Semiring-Precategory = precategory-Large-Precategory Commutative-Semiring-Large-Precategory