The precategory of commutative monoids
module group-theory.precategory-of-commutative-monoids where
Imports
open import category-theory.large-precategories open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.homomorphisms-commutative-monoids
Idea
The precategory of commutative monoids consists of commutative monoids and homomorphisms of monoids.
Definitions
The large precategory of commutative monoids
Commutative-Monoid-Large-Precategory : Large-Precategory lsuc _⊔_ obj-Large-Precategory Commutative-Monoid-Large-Precategory = Commutative-Monoid hom-Large-Precategory Commutative-Monoid-Large-Precategory = hom-Commutative-Monoid comp-hom-Large-Precategory Commutative-Monoid-Large-Precategory {X = K} {L} {M} = comp-hom-Commutative-Monoid K L M id-hom-Large-Precategory Commutative-Monoid-Large-Precategory {X = M} = id-hom-Commutative-Monoid M associative-comp-hom-Large-Precategory Commutative-Monoid-Large-Precategory {X = K} {L} {M} {N} = associative-comp-hom-Commutative-Monoid K L M N left-unit-law-comp-hom-Large-Precategory Commutative-Monoid-Large-Precategory {X = M} {N} = left-unit-law-comp-hom-Commutative-Monoid M N right-unit-law-comp-hom-Large-Precategory Commutative-Monoid-Large-Precategory {X = M} {N} = right-unit-law-comp-hom-Commutative-Monoid M N