Large precategories

module category-theory.large-precategories where
Imports
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.sets
open import foundation.universe-levels

Idea

A large precategory is a precategory where we don't fix a universe for the type of objects or morphisms. (This cannot be done with Σ-types, we must use a record type.)

Definition

Large precategories

record
  Large-Precategory (α : Level  Level) (β : Level  Level  Level) : UUω where
  constructor make-Large-Precategory
  field
    obj-Large-Precategory :
      (l : Level)  UU (α l)
    hom-Large-Precategory :
      {l1 l2 : Level}  obj-Large-Precategory l1  obj-Large-Precategory l2 
      Set (β l1 l2)
    comp-hom-Large-Precategory :
      {l1 l2 l3 : Level}
      {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2}
      {Z : obj-Large-Precategory l3} 
      type-Set (hom-Large-Precategory Y Z) 
      type-Set (hom-Large-Precategory X Y) 
      type-Set (hom-Large-Precategory X Z)
    id-hom-Large-Precategory :
      {l1 : Level} {X : obj-Large-Precategory l1} 
      type-Set (hom-Large-Precategory X X)
    associative-comp-hom-Large-Precategory :
      {l1 l2 l3 l4 : Level}
      {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2}
      {Z : obj-Large-Precategory l3} {W : obj-Large-Precategory l4} 
      (h : type-Set (hom-Large-Precategory Z W))
      (g : type-Set (hom-Large-Precategory Y Z))
      (f : type-Set (hom-Large-Precategory X Y)) 
      ( comp-hom-Large-Precategory (comp-hom-Large-Precategory h g) f) 
      ( comp-hom-Large-Precategory h (comp-hom-Large-Precategory g f))
    left-unit-law-comp-hom-Large-Precategory :
      {l1 l2 : Level}
      {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2}
      (f : type-Set (hom-Large-Precategory X Y)) 
      ( comp-hom-Large-Precategory id-hom-Large-Precategory f)  f
    right-unit-law-comp-hom-Large-Precategory :
      {l1 l2 : Level}
      {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2}
      (f : type-Set (hom-Large-Precategory X Y)) 
      ( comp-hom-Large-Precategory f id-hom-Large-Precategory)  f

open Large-Precategory public

module _
  {α : Level  Level} {β : Level  Level  Level}
  (C : Large-Precategory α β) {l1 l2 : Level}
  (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2)
  where

  type-hom-Large-Precategory : UU (β l1 l2)
  type-hom-Large-Precategory = type-Set (hom-Large-Precategory C X Y)

  is-set-type-hom-Large-Precategory : is-set type-hom-Large-Precategory
  is-set-type-hom-Large-Precategory =
    is-set-type-Set (hom-Large-Precategory C X Y)

module _
  {α : Level  Level} {β : Level  Level  Level}
  (C : Large-Precategory α β) {l1 l2 l3 : Level}
  {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2}
  {Z : obj-Large-Precategory C l3}
  where

  ap-comp-hom-Large-Precategory :
    {g g' : type-hom-Large-Precategory C Y Z} (p : g  g')
    {f f' : type-hom-Large-Precategory C X Y} (q : f  f') 
    comp-hom-Large-Precategory C g f 
    comp-hom-Large-Precategory C g' f'
  ap-comp-hom-Large-Precategory p q =
    ap-binary (comp-hom-Large-Precategory C) p q

  comp-hom-Large-Precategory' :
    type-hom-Large-Precategory C X Y  type-hom-Large-Precategory C Y Z 
    type-hom-Large-Precategory C X Z
  comp-hom-Large-Precategory' f g = comp-hom-Large-Precategory C g f

Precategories obtained from large precategories

module _
  {α : Level  Level} {β : Level  Level  Level}
  (C : Large-Precategory α β)
  where

  precategory-Large-Precategory :
    (l : Level)  Precategory (α l) (β l l)
  pr1 (precategory-Large-Precategory l) =
    obj-Large-Precategory C l
  pr1 (pr2 (precategory-Large-Precategory l)) =
    hom-Large-Precategory C
  pr1 (pr1 (pr2 (pr2 (precategory-Large-Precategory l)))) =
    comp-hom-Large-Precategory C
  pr2 (pr1 (pr2 (pr2 (precategory-Large-Precategory l)))) =
    associative-comp-hom-Large-Precategory C
  pr1 (pr2 (pr2 (pr2 (precategory-Large-Precategory l)))) x =
    id-hom-Large-Precategory C
  pr1 (pr2 (pr2 (pr2 (pr2 (precategory-Large-Precategory l))))) =
    left-unit-law-comp-hom-Large-Precategory C
  pr2 (pr2 (pr2 (pr2 (pr2 (precategory-Large-Precategory l))))) =
    right-unit-law-comp-hom-Large-Precategory C