Greatest lower bounds in large posets
module order-theory.greatest-lower-bounds-large-posets where
Imports
open import foundation.logical-equivalences open import foundation.universe-levels open import order-theory.dependent-products-large-posets open import order-theory.large-posets open import order-theory.lower-bounds-large-posets
Idea
A greatest binary lower bound of two elements a
and b
in a large poset
P
is an element x
such that for every element y
in P
the logical
equivalence
is-binary-lower-bound-Large-Poset P a b y ↔ y ≤ x
holds.
Definitions
The predicate that an element of a large poset is the greatest lower bound of two elements
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 l2 : Level} (a : type-Large-Poset P l1) (b : type-Large-Poset P l2) where is-greatest-binary-lower-bound-Large-Poset : {l3 : Level} → type-Large-Poset P l3 → UUω is-greatest-binary-lower-bound-Large-Poset x = {l4 : Level} (y : type-Large-Poset P l4) → is-binary-lower-bound-Large-Poset P a b y ↔ leq-Large-Poset P y x
Properties
Any pointwise greatest lower bound of two elements in a dependent product of large posets is a greatest lower bound
module _ {α : Level → Level} {β : Level → Level → Level} {l : Level} {I : UU l} (P : I → Large-Poset α β) {l1 l2 l3 : Level} (x : type-Π-Large-Poset P l1) (y : type-Π-Large-Poset P l2) (z : type-Π-Large-Poset P l3) where is-greatest-binary-lower-bound-Π-Large-Poset : ( (i : I) → is-greatest-binary-lower-bound-Large-Poset (P i) (x i) (y i) (z i)) → is-greatest-binary-lower-bound-Large-Poset (Π-Large-Poset P) x y z is-greatest-binary-lower-bound-Π-Large-Poset H u = logical-equivalence-reasoning is-binary-lower-bound-Large-Poset (Π-Large-Poset P) x y u ↔ ((i : I) → is-binary-lower-bound-Large-Poset (P i) (x i) (y i) (u i)) by inv-iff ( logical-equivalence-is-binary-lower-bound-Π-Large-Poset P x y u) ↔ leq-Π-Large-Poset P u z by iff-Π (λ i → H i (u i))