Trivial commutative rings
module commutative-algebra.trivial-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.contractible-types open import foundation.negation open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import ring-theory.trivial-rings
Idea
Trivial commutative rings are commutative rings in which 0 = 1
.
Definition
is-trivial-commutative-ring-Prop : {l : Level} → Commutative-Ring l → Prop l is-trivial-commutative-ring-Prop A = Id-Prop ( set-Commutative-Ring A) ( zero-Commutative-Ring A) ( one-Commutative-Ring A) is-trivial-Commutative-Ring : {l : Level} → Commutative-Ring l → UU l is-trivial-Commutative-Ring A = type-Prop (is-trivial-commutative-ring-Prop A) is-prop-is-trivial-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → is-prop (is-trivial-Commutative-Ring A) is-prop-is-trivial-Commutative-Ring A = is-prop-type-Prop (is-trivial-commutative-ring-Prop A) is-nontrivial-commutative-ring-Prop : {l : Level} → Commutative-Ring l → Prop l is-nontrivial-commutative-ring-Prop A = neg-Prop (is-trivial-commutative-ring-Prop A) is-nontrivial-Commutative-Ring : {l : Level} → Commutative-Ring l → UU l is-nontrivial-Commutative-Ring A = type-Prop (is-nontrivial-commutative-ring-Prop A) is-prop-is-nontrivial-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → is-prop (is-nontrivial-Commutative-Ring A) is-prop-is-nontrivial-Commutative-Ring A = is-prop-type-Prop (is-nontrivial-commutative-ring-Prop A)
Properties
The carrier type of a zero commutative ring is contractible
is-contr-is-trivial-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → is-trivial-Commutative-Ring A → is-contr (type-Commutative-Ring A) is-contr-is-trivial-Commutative-Ring A p = is-contr-is-trivial-Ring (ring-Commutative-Ring A) p