Shriek of concrete group homomorphisms
module group-theory.shriek-concrete-group-actions where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.set-truncations open import foundation.sets open import foundation.universe-levels open import group-theory.concrete-group-actions open import group-theory.concrete-groups open import group-theory.homomorphisms-concrete-groups
Definition
Operations on group actions
module _ {l1 l2 : Level} (G : Concrete-Group l1) (H : Concrete-Group l2) (f : hom-Concrete-Group G H) where left-adjoint-subst-action-Concrete-Group : {l : Level} → (action-Concrete-Group l G) → (action-Concrete-Group (l1 ⊔ l2 ⊔ l) H) left-adjoint-subst-action-Concrete-Group X y = trunc-Set ( Σ ( classifying-type-Concrete-Group G) ( λ x → type-Set (X x) × Id (classifying-map-hom-Concrete-Group G H f x) y))