Sorting algorithms for lists

module lists.sorting-algorithms-lists where
Imports
open import elementary-number-theory.natural-numbers

open import finite-group-theory.permutations-standard-finite-types

open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

open import linear-algebra.vectors

open import lists.arrays
open import lists.lists
open import lists.permutation-lists
open import lists.sorted-lists
open import lists.sorting-algorithms-vectors

open import order-theory.decidable-total-orders

open import univalent-combinatorics.standard-finite-types

Idea

In this file we define the notion of sorting algorithms for lists.

Definition

A function f from list to list is a sort if f is a permutation and if for every list l, f l is sorted

module _
  {l1 l2 : Level}
  (X : Decidable-Total-Order l1 l2)
  (f :
      list (type-Decidable-Total-Order X) 
      list (type-Decidable-Total-Order X))
  where

  is-sort-list : UU (l1  l2)
  is-sort-list =
    is-permutation-list f ×
    ((l : list (type-Decidable-Total-Order X))  is-sorted-list X (f l))

  is-permutation-list-is-sort-list :
    is-sort-list  is-permutation-list f
  is-permutation-list-is-sort-list S = pr1 (S)

  permutation-list-is-sort-list :
    is-sort-list  (l : list (type-Decidable-Total-Order X)) 
    Permutation (length-list l)
  permutation-list-is-sort-list S l =
    permutation-is-permutation-list f (is-permutation-list-is-sort-list S) l

  eq-permute-list-permutation-is-sort-list :
    (S : is-sort-list) (l : list (type-Decidable-Total-Order X)) 
    f l  permute-list l (permutation-list-is-sort-list S l)
  eq-permute-list-permutation-is-sort-list S l =
    eq-permute-list-permutation-is-permutation-list
      ( f)
      ( is-permutation-list-is-sort-list S) l

  is-sorting-list-is-sort-list :
    is-sort-list 
    (l : list (type-Decidable-Total-Order X))  is-sorted-list X (f l)
  is-sorting-list-is-sort-list S = pr2 (S)

Properties

From sorting algorithms for vectors to sorting algorithms for lists

module _
  {l1 l2 : Level}
  (X : Decidable-Total-Order l1 l2)
  where

  is-sort-list-is-sort-vec :
    (f :
      {n : } 
      vec (type-Decidable-Total-Order X) n 
      vec (type-Decidable-Total-Order X) n) 
    is-sort-vec X f 
    is-sort-list X  l  list-vec (length-list l) (f (vec-list l)))
  pr1 (is-sort-list-is-sort-vec f S) =
    is-permutation-list-is-permutation-vec
      ( λ n  f)
      ( λ n  pr1 (S n))
  pr2 (is-sort-list-is-sort-vec f S) l =
    is-sorted-list-is-sorted-vec
      ( X)
      ( length-list l)
      ( f (vec-list l)) (pr2 (S (length-list l)) (vec-list l))