Central elements of rings

module ring-theory.central-elements-rings where
Imports
open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import ring-theory.central-elements-semirings
open import ring-theory.rings

Idea

An element x of a ring R is said to be central if xy = yx for every y : R.

Definition

module _
  {l : Level} (R : Ring l)
  where

  is-central-element-ring-Prop : type-Ring R  Prop l
  is-central-element-ring-Prop =
    is-central-element-semiring-Prop (semiring-Ring R)

  is-central-element-Ring : type-Ring R  UU l
  is-central-element-Ring = is-central-element-Semiring (semiring-Ring R)

  is-prop-is-central-element-Ring :
    (x : type-Ring R)  is-prop (is-central-element-Ring x)
  is-prop-is-central-element-Ring =
    is-prop-is-central-element-Semiring (semiring-Ring R)

Properties

The zero element is central

module _
  {l : Level} (R : Ring l)
  where

  is-central-element-zero-Ring : is-central-element-Ring R (zero-Ring R)
  is-central-element-zero-Ring =
    is-central-element-zero-Semiring (semiring-Ring R)

The unit element is central

module _
  {l : Level} (R : Ring l)
  where

  is-central-element-one-Ring : is-central-element-Ring R (one-Ring R)
  is-central-element-one-Ring =
    is-central-element-one-Semiring (semiring-Ring R)

The sum of two central elements is central

module _
  {l : Level} (R : Ring l)
  where

  is-central-element-add-Ring :
    (x y : type-Ring R)  is-central-element-Ring R x 
    is-central-element-Ring R y  is-central-element-Ring R (add-Ring R x y)
  is-central-element-add-Ring =
    is-central-element-add-Semiring (semiring-Ring R)

The negative of a central element is central

module _
  {l : Level} (R : Ring l)
  where

  is-central-element-neg-Ring :
    (x : type-Ring R)  is-central-element-Ring R x 
    is-central-element-Ring R (neg-Ring R x)
  is-central-element-neg-Ring x H y =
    ( left-negative-law-mul-Ring R x y) 
    ( ( ap (neg-Ring R) (H y)) 
      ( inv (right-negative-law-mul-Ring R y x)))

-1 is a central element

module _
  {l : Level} (R : Ring l)
  where

  is-central-element-neg-one-Ring :
    is-central-element-Ring R (neg-one-Ring R)
  is-central-element-neg-one-Ring =
    is-central-element-neg-Ring R (one-Ring R) (is-central-element-one-Ring R)

The product of two central elements is central

module _
  {l : Level} (R : Ring l)
  where

  is-central-element-mul-Ring :
    (x y : type-Ring R)  is-central-element-Ring R x 
    is-central-element-Ring R y  is-central-element-Ring R (mul-Ring R x y)
  is-central-element-mul-Ring =
    is-central-element-mul-Semiring (semiring-Ring R)