Central elements of rings
module ring-theory.central-elements-rings where
Imports
open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import ring-theory.central-elements-semirings open import ring-theory.rings
Idea
An element x
of a ring R
is said to be central if xy = yx
for every
y : R
.
Definition
module _ {l : Level} (R : Ring l) where is-central-element-ring-Prop : type-Ring R → Prop l is-central-element-ring-Prop = is-central-element-semiring-Prop (semiring-Ring R) is-central-element-Ring : type-Ring R → UU l is-central-element-Ring = is-central-element-Semiring (semiring-Ring R) is-prop-is-central-element-Ring : (x : type-Ring R) → is-prop (is-central-element-Ring x) is-prop-is-central-element-Ring = is-prop-is-central-element-Semiring (semiring-Ring R)
Properties
The zero element is central
module _ {l : Level} (R : Ring l) where is-central-element-zero-Ring : is-central-element-Ring R (zero-Ring R) is-central-element-zero-Ring = is-central-element-zero-Semiring (semiring-Ring R)
The unit element is central
module _ {l : Level} (R : Ring l) where is-central-element-one-Ring : is-central-element-Ring R (one-Ring R) is-central-element-one-Ring = is-central-element-one-Semiring (semiring-Ring R)
The sum of two central elements is central
module _ {l : Level} (R : Ring l) where is-central-element-add-Ring : (x y : type-Ring R) → is-central-element-Ring R x → is-central-element-Ring R y → is-central-element-Ring R (add-Ring R x y) is-central-element-add-Ring = is-central-element-add-Semiring (semiring-Ring R)
The negative of a central element is central
module _ {l : Level} (R : Ring l) where is-central-element-neg-Ring : (x : type-Ring R) → is-central-element-Ring R x → is-central-element-Ring R (neg-Ring R x) is-central-element-neg-Ring x H y = ( left-negative-law-mul-Ring R x y) ∙ ( ( ap (neg-Ring R) (H y)) ∙ ( inv (right-negative-law-mul-Ring R y x)))
-1
is a central element
module _ {l : Level} (R : Ring l) where is-central-element-neg-one-Ring : is-central-element-Ring R (neg-one-Ring R) is-central-element-neg-one-Ring = is-central-element-neg-Ring R (one-Ring R) (is-central-element-one-Ring R)
The product of two central elements is central
module _ {l : Level} (R : Ring l) where is-central-element-mul-Ring : (x y : type-Ring R) → is-central-element-Ring R x → is-central-element-Ring R y → is-central-element-Ring R (mul-Ring R x y) is-central-element-mul-Ring = is-central-element-mul-Semiring (semiring-Ring R)