Group solver
module reflection.group-solver where
Imports
open import elementary-number-theory.natural-numbers open import foundation.coproduct-types open import foundation.decidable-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.groups open import linear-algebra.vectors open import lists.concatenation-lists open import lists.functoriality-lists open import lists.lists open import lists.reversing-lists
Idea
This module simplifies group expressions, such that all items associate the same way and removes units and inverses next to the original.
The main entry-point is solveExpr
below
data Fin : ℕ → UU lzero where zero-Fin : ∀ {n} → Fin (succ-ℕ n) succ-Fin : ∀ {n} → Fin n → Fin (succ-ℕ n) finEq : ∀ {n} → (a b : Fin n) → is-decidable (Id a b) finEq zero-Fin zero-Fin = inl refl finEq zero-Fin (succ-Fin b) = inr (λ ()) finEq (succ-Fin a) zero-Fin = inr (λ ()) finEq (succ-Fin a) (succ-Fin b) with finEq a b ... | inl eq = inl (ap succ-Fin eq) ... | inr neq = inr (λ { refl → neq refl}) getVec : ∀ {n} {l} {A : UU l} → vec A n → Fin n → A getVec (x ∷ v) zero-Fin = x getVec (x ∷ v) (succ-Fin k) = getVec v k data GroupSyntax (n : ℕ) : UU where gUnit : GroupSyntax n gMul : GroupSyntax n → GroupSyntax n → GroupSyntax n gInv : GroupSyntax n → GroupSyntax n inner : Fin n → GroupSyntax n data SimpleElem (n : ℕ) : UU where inv-SE : Fin n → SimpleElem n pure-SE : Fin n → SimpleElem n inv-SE' : ∀ {n} → SimpleElem n → SimpleElem n inv-SE' (inv-SE k) = pure-SE k inv-SE' (pure-SE k) = inv-SE k Simple : (n : ℕ) → UU Simple n = list (SimpleElem n) module _ {n : ℕ} where unquoteSimpleElem : SimpleElem n → GroupSyntax n unquoteSimpleElem (inv-SE x) = gInv (inner x) unquoteSimpleElem (pure-SE x) = inner x unquoteSimpleNonEmpty : Simple n → GroupSyntax n → GroupSyntax n unquoteSimpleNonEmpty nil x = x unquoteSimpleNonEmpty (cons y xs) x = gMul (unquoteSimpleNonEmpty xs (unquoteSimpleElem y)) x unquoteSimple : Simple n → GroupSyntax n unquoteSimple nil = gUnit unquoteSimple (cons x xs) = unquoteSimpleNonEmpty xs (unquoteSimpleElem x) elim-inverses : SimpleElem n → Simple n → Simple n elim-inverses x nil = cons x nil elim-inverses xi@(inv-SE x) yxs@(cons (inv-SE y) xs) = cons xi yxs elim-inverses xi@(inv-SE x) yxs@(cons (pure-SE y) xs) with finEq x y ... | inl eq = xs ... | inr neq = cons xi yxs elim-inverses xi@(pure-SE x) yxs@(cons (inv-SE y) xs) with finEq x y ... | inl eq = xs ... | inr neq = cons xi yxs elim-inverses xi@(pure-SE x) yxs@(cons (pure-SE y) xs) = cons xi yxs concat-simplify : Simple n → Simple n → Simple n concat-simplify nil b = b concat-simplify (cons x a) b = elim-inverses x (concat-simplify a b) simplifyGS : GroupSyntax n → Simple n simplifyGS gUnit = nil simplifyGS (gMul a b) = concat-simplify (simplifyGS b) (simplifyGS a) simplifyGS (gInv a) = reverse-list (map-list inv-SE' (simplifyGS a)) -- simplifyGS (gInv a) = map-list inv-SE' (reverse-list (simplifyGS a)) simplifyGS (inner n) = cons (pure-SE n) nil data GroupEqualityElem : GroupSyntax n → GroupSyntax n → UU where -- equivalence relation xsym-GE : ∀ {x} {y} → GroupEqualityElem x y → GroupEqualityElem y x -- Variations on ap -- xap-gMul : ∀ {x} {y} {z} {w} → GroupEqualityElem x y → GroupEqualityElem z w → GroupEqualityElem (gMul x z) (gMul y w) xap-gMul-l : ∀ {x} {y} {z} → GroupEqualityElem x y → GroupEqualityElem (gMul x z) (gMul y z) xap-gMul-r : ∀ {x} {y} {z} → GroupEqualityElem y z → GroupEqualityElem (gMul x y) (gMul x z) xap-gInv : ∀ {x} {y} → GroupEqualityElem x y → GroupEqualityElem (gInv x) (gInv y) -- Group laws xassoc-GE : ∀ x y z → GroupEqualityElem (gMul (gMul x y) z) (gMul x (gMul y z)) xl-unit : ∀ x → GroupEqualityElem (gMul gUnit x) x xr-unit : ∀ x → GroupEqualityElem (gMul x gUnit) x xl-inv : ∀ x → GroupEqualityElem (gMul (gInv x) x) gUnit xr-inv : ∀ x → GroupEqualityElem (gMul x (gInv x)) gUnit -- Theorems that are provable from the others xinv-unit-GE : GroupEqualityElem (gInv gUnit) gUnit xinv-inv-GE : ∀ x → GroupEqualityElem (gInv (gInv x)) x xdistr-inv-mul-GE : ∀ x y → GroupEqualityElem (gInv (gMul x y)) (gMul (gInv y) (gInv x)) data GroupEquality : GroupSyntax n → GroupSyntax n → UU where refl-GE : ∀ {x} → GroupEquality x x _∷GE_ : ∀ {x} {y} {z} → GroupEqualityElem x y → GroupEquality y z → GroupEquality x z infixr 5 _∷GE_ module _ where -- equivalence relation singleton-GE : ∀ {x y} → GroupEqualityElem x y → GroupEquality x y singleton-GE x = x ∷GE refl-GE _∙GE_ : ∀ {x} {y} {z} → GroupEquality x y → GroupEquality y z → GroupEquality x z refl-GE ∙GE b = b (x ∷GE a) ∙GE b = x ∷GE (a ∙GE b) infixr 20 _∙GE_ sym-GE : ∀ {x} {y} → GroupEquality x y → GroupEquality y x sym-GE refl-GE = refl-GE sym-GE (a ∷GE as) = sym-GE as ∙GE singleton-GE (xsym-GE a) -- Variations on ap ap-gInv : ∀ {x} {y} → GroupEquality x y → GroupEquality (gInv x) (gInv y) ap-gInv refl-GE = refl-GE ap-gInv (a ∷GE as) = xap-gInv a ∷GE ap-gInv as ap-gMul-l : ∀ {x} {y} {z} → GroupEquality x y → GroupEquality (gMul x z) (gMul y z) ap-gMul-l refl-GE = refl-GE ap-gMul-l (x ∷GE xs) = xap-gMul-l x ∷GE ap-gMul-l xs ap-gMul-r : ∀ {x} {y} {z} → GroupEquality y z → GroupEquality (gMul x y) (gMul x z) ap-gMul-r refl-GE = refl-GE ap-gMul-r (x ∷GE xs) = xap-gMul-r x ∷GE ap-gMul-r xs ap-gMul : ∀ {x} {y} {z} {w} → GroupEquality x y → GroupEquality z w → GroupEquality (gMul x z) (gMul y w) ap-gMul p q = ap-gMul-l p ∙GE ap-gMul-r q -- Group laws assoc-GE : ∀ x y z → GroupEquality (gMul (gMul x y) z) (gMul x (gMul y z)) assoc-GE x y z = singleton-GE (xassoc-GE x y z) l-unit : ∀ x → GroupEquality (gMul gUnit x) x l-unit x = singleton-GE (xl-unit x) r-unit : ∀ x → GroupEquality (gMul x gUnit) x r-unit x = singleton-GE (xr-unit x) l-inv : ∀ x → GroupEquality (gMul (gInv x) x) gUnit l-inv x = singleton-GE (xl-inv x) r-inv : ∀ x → GroupEquality (gMul x (gInv x)) gUnit r-inv x = singleton-GE (xr-inv x) -- Theorems that are provable from the others inv-unit-GE : GroupEquality (gInv gUnit) gUnit inv-unit-GE = singleton-GE (xinv-unit-GE) inv-inv-GE : ∀ x → GroupEquality (gInv (gInv x)) x inv-inv-GE x = singleton-GE (xinv-inv-GE x) distr-inv-mul-GE : ∀ x y → GroupEquality (gInv (gMul x y)) (gMul (gInv y) (gInv x)) distr-inv-mul-GE x y = singleton-GE (xdistr-inv-mul-GE x y) assoc-GE' : ∀ x y z → GroupEquality (gMul x (gMul y z)) (gMul (gMul x y) z) assoc-GE' x y z = sym-GE (assoc-GE x y z) elim-inverses-remove-valid : (b : list (SimpleElem n)) (w u : GroupSyntax n) → GroupEquality (gMul w u) gUnit → GroupEquality ( gMul (unquoteSimpleNonEmpty b w) u) ( unquoteSimple b) elim-inverses-remove-valid nil w u eq = eq elim-inverses-remove-valid (cons x b) w u eq = assoc-GE _ _ _ ∙GE ap-gMul-r eq ∙GE r-unit _ elim-inverses-valid : (x : SimpleElem n) (b : Simple n) → GroupEquality ( gMul (unquoteSimple b) (unquoteSimpleElem x)) ( unquoteSimple (elim-inverses x b)) elim-inverses-valid x nil = l-unit (unquoteSimpleElem x) elim-inverses-valid (inv-SE x) (cons (inv-SE y) b) = refl-GE elim-inverses-valid (inv-SE x) (cons (pure-SE y) b) with finEq x y ... | inl refl = elim-inverses-remove-valid b (inner x) (gInv (inner x)) (r-inv (inner x)) ... | inr neq = refl-GE elim-inverses-valid (pure-SE x) (cons (inv-SE y) b) with finEq x y ... | inl refl = elim-inverses-remove-valid b (gInv (inner x)) (inner x) (l-inv (inner x)) ... | inr neq = refl-GE elim-inverses-valid (pure-SE x) (cons (pure-SE y) b) = refl-GE concat-simplify-nonempty-valid : (x : SimpleElem n) (a : list (SimpleElem n)) (b : Simple n) → GroupEquality ( gMul (unquoteSimple b) (unquoteSimple (cons x a))) ( unquoteSimple (concat-simplify (cons x a) b)) concat-simplify-nonempty-valid x nil b = elim-inverses-valid x b concat-simplify-nonempty-valid x (cons y a) b = assoc-GE' _ _ _ ∙GE ap-gMul-l (concat-simplify-nonempty-valid y a b) ∙GE elim-inverses-valid x (elim-inverses y (concat-simplify a b)) concat-simplify-valid : ∀ (u w : Simple n) → GroupEquality ( gMul (unquoteSimple w) (unquoteSimple u)) ( unquoteSimple (concat-simplify u w)) concat-simplify-valid nil b = r-unit (unquoteSimple b) concat-simplify-valid (cons x a) b = concat-simplify-nonempty-valid x a b inv-single-valid : ∀ w → GroupEquality ( gInv (unquoteSimpleElem w)) ( unquoteSimpleElem (inv-SE' w)) inv-single-valid (inv-SE x) = inv-inv-GE (inner x) inv-single-valid (pure-SE x) = refl-GE gMul-concat-nonempty : (w : GroupSyntax n) (as b : Simple n) → GroupEquality ( gMul (unquoteSimple b) (unquoteSimpleNonEmpty as w)) ( unquoteSimpleNonEmpty (concat-list as b) w) gMul-concat-nonempty w nil nil = l-unit w gMul-concat-nonempty w nil (cons x b) = refl-GE gMul-concat-nonempty w (cons x as) b = assoc-GE' _ _ _ ∙GE ap-gMul-l (gMul-concat-nonempty (unquoteSimpleElem x) as b) gMul-concat' : (xs : Simple n) (ys : Simple n) → GroupEquality ( gMul (unquoteSimple ys) (unquoteSimple xs)) ( unquoteSimple (concat-list xs ys)) gMul-concat' nil bs = r-unit _ gMul-concat' (cons x as) b = gMul-concat-nonempty (unquoteSimpleElem x) as b gMul-concat-1 : (xs : Simple n) (x : SimpleElem n) → GroupEquality ( gMul (unquoteSimpleElem x) (unquoteSimple xs)) ( unquoteSimple (concat-list xs (cons x nil))) gMul-concat-1 xs a = gMul-concat' xs (cons a nil) -- inv-simplify-valid'-nonempty : ∀ (x : SimpleElem n) (xs : list (SimpleElem n)) → -- GroupEquality (gInv (unquoteSimple (cons x xs))) -- (unquoteSimple (reverse-list (map-list inv-SE' (cons x xs)))) -- inv-simplify-valid'-nonempty x nil = inv-single-valid x -- inv-simplify-valid'-nonempty x (cons y xs) = -- distr-inv-mul-GE (unquoteSimple (cons y xs)) (unquoteSimpleElem x) ∙GE -- ap-gMul (inv-single-valid x) (inv-simplify-valid'-nonempty y xs) ∙GE -- gMul-concat-1 (concat-list (reverse-list (map-list inv-SE' xs)) (in-list (inv-SE' y))) (inv-SE' x) -- inv-simplify-valid' : ∀ (w : list (SimpleElem n)) → -- GroupEquality (gInv (unquoteSimple w)) -- (unquoteSimple (reverse-list (map-list inv-SE' w))) -- inv-simplify-valid' nil = inv-unit-GE -- inv-simplify-valid' (cons x xs) = -- inv-simplify-valid'-nonempty x xs -- simplifyValid : ∀ (g : GroupSyntax n) → GroupEquality g (unquoteSimple (simplifyGS g)) -- simplifyValid gUnit = refl-GE -- simplifyValid (gMul a b) = -- (ap-gMul (simplifyValid a) (simplifyValid b)) ∙GE -- (concat-simplify-valid (simplifyGS b) (simplifyGS a)) -- simplifyValid (gInv g) = ap-gInv (simplifyValid g) ∙GE inv-simplify-valid' (simplifyGS g) -- simplifyValid (inner _) = refl-GE Env : ∀ {l} → ℕ → UU l → UU l Env n A = vec A n module _ {l : Level} (G : Group l) where unQuoteGS : ∀ {n} → GroupSyntax n → Env n (type-Group G) → type-Group G unQuoteGS gUnit e = unit-Group G unQuoteGS (gMul x y) e = mul-Group G (unQuoteGS x e) (unQuoteGS y e) unQuoteGS (gInv x) e = inv-Group G (unQuoteGS x e) unQuoteGS (inner x) e = getVec e x private -- Shorter names to make the proofs less verbose _*_ = mul-Group G infixl 30 _*_ _⁻¹ = inv-Group G infix 40 _⁻¹ unit = unit-Group G useGroupEqualityElem : {x y : GroupSyntax n} (env : Env n (type-Group G)) → GroupEqualityElem x y → unQuoteGS x env = unQuoteGS y env useGroupEqualityElem env (xsym-GE ge) = inv (useGroupEqualityElem env ge) useGroupEqualityElem env (xap-gMul-l {z = z} ge') = ap (_* unQuoteGS z env) (useGroupEqualityElem env ge') useGroupEqualityElem env (xap-gMul-r {x = x} ge') = ap (unQuoteGS x env *_) (useGroupEqualityElem env ge') -- useGroupEqualityElem env (xap-gMul {y = y} {z = z} ge ge') = -- ap (_* (unQuoteGS z env)) (useGroupEqualityElem env ge) -- ∙ ap (unQuoteGS y env *_) (useGroupEqualityElem env ge') useGroupEqualityElem env (xap-gInv ge) = ap (inv-Group G) (useGroupEqualityElem env ge) useGroupEqualityElem env (xassoc-GE x y z) = associative-mul-Group G _ _ _ useGroupEqualityElem env (xl-unit _) = left-unit-law-mul-Group G _ useGroupEqualityElem env (xr-unit _) = right-unit-law-mul-Group G _ useGroupEqualityElem env (xl-inv x) = left-inverse-law-mul-Group G _ useGroupEqualityElem env (xr-inv x) = right-inverse-law-mul-Group G _ useGroupEqualityElem env xinv-unit-GE = inv-unit-Group G useGroupEqualityElem env (xinv-inv-GE x) = inv-inv-Group G (unQuoteGS x env) useGroupEqualityElem env (xdistr-inv-mul-GE x y) = distributive-inv-mul-Group G (unQuoteGS x env) (unQuoteGS y env) useGroupEquality : {x y : GroupSyntax n} (env : Env n (type-Group G)) → GroupEquality x y → unQuoteGS x env = unQuoteGS y env useGroupEquality env refl-GE = refl useGroupEquality env (x ∷GE refl-GE) = useGroupEqualityElem env x useGroupEquality env (x ∷GE xs@(_ ∷GE _)) = useGroupEqualityElem env x ∙ useGroupEquality env xs -- simplifyExpression : -- ∀ (g : GroupSyntax n) (env : Env n (type-Group G)) → -- unQuoteGS g env = unQuoteGS (unquoteSimple (simplifyGS g)) env -- simplifyExpression g env = useGroupEquality env (simplifyValid g) -- Variadic functions n-args : (n : ℕ) (A B : UU) → UU n-args zero-ℕ A B = B n-args (succ-ℕ n) A B = A → n-args n A B map-n-args : ∀ {A A' B : UU} (n : ℕ) → (A' → A) → n-args n A B → n-args n A' B map-n-args zero-ℕ f v = v map-n-args (succ-ℕ n) f v = λ x → map-n-args n f (v (f x)) apply-n-args-fin : ∀ {B : UU} (n : ℕ) → n-args n (Fin n) B → B apply-n-args-fin zero-ℕ f = f apply-n-args-fin (succ-ℕ n) f = apply-n-args-fin n (map-n-args n succ-Fin (f zero-Fin)) apply-n-args : ∀ {B : UU} (n : ℕ) → n-args n (GroupSyntax n) B → B apply-n-args n f = apply-n-args-fin n (map-n-args n inner f) -- A variation of simplifyExpression which takes a function from the free variables to expr -- simplifyExpr : -- ∀ (env : Env n (type-Group G)) (g : n-args n (GroupSyntax n) (GroupSyntax n)) → -- unQuoteGS (apply-n-args n g) env = unQuoteGS (unquoteSimple (simplifyGS (apply-n-args n g))) env -- simplifyExpr env g = simplifyExpression (apply-n-args n g) env open import linear-algebra.vectors using (_∷_ ; empty-vec) public
-- private _\*'_ : ∀ {n} → GroupSyntax n → GroupSyntax n → GroupSyntax n _\*'_ = -- gMul x : GroupSyntax 2 x = inner (zero-Fin) y : GroupSyntax 2 y = inner -- (succ-Fin zero-Fin) -- infixl 20 _*'_ -- ex1 : GroupEquality {n = 2} (gInv (x *' y *' gInv x *' gInv y)) (y *' x *' gInv y *' gInv x) -- ex1 = simplifyValid _ -- ex2 : ∀ x y → (x * y * x ⁻¹ * y ⁻¹) ⁻¹ = (y * x * y ⁻¹ * x ⁻¹) -- ex2 x' y' = simplifyExpression (gInv (x *' y *' gInv x *' gInv y)) (x' ∷ y' ∷ empty-vec) -- _ : UU -- -- _ = {!simplifyValid (y *' (x *' (gInv y *' (gInv x *' gUnit))))!} -- _ = {!ex1!} -- ex3 : ∀ x y → (x * y) ⁻¹ = (y ⁻¹ * x ⁻¹) -- ex3 x' y' = {!simplifyExpression (gInv (x *' y)) (x' ∷ y' ∷ empty-vec)!} -- _ : GroupEquality {n = 2} (y *' (x *' (gInv y *' (gInv x *' gUnit)))) (y *' (x *' (gInv y *' (gInv x *' gUnit)))) -- _ = {!simplifyValid (gInv x *' x *' y)!} -- -- _ = {!simplifyValid (gUnit *' gUnit)!} -- -- _ = {!simplifyValid (x *' gUnit)!}