Nil ideals
module ring-theory.nil-ideals-rings where
Imports
open import foundation.propositions open import foundation.universe-levels open import ring-theory.ideals-rings open import ring-theory.nilpotent-elements-rings open import ring-theory.rings
Idea
A nil ideal in a ring is an ideal in which every element is nilpotent
Definition
Nil left ideals
module _ {l1 l2 : Level} (R : Ring l1) (I : left-ideal-Ring l2 R) where is-nil-left-ideal-ring-Prop : Prop (l1 ⊔ l2) is-nil-left-ideal-ring-Prop = Π-Prop ( type-left-ideal-Ring R I) ( λ x → is-nilpotent-element-ring-Prop R (inclusion-left-ideal-Ring R I x)) is-nil-left-ideal-Ring : UU (l1 ⊔ l2) is-nil-left-ideal-Ring = type-Prop is-nil-left-ideal-ring-Prop is-prop-is-nil-left-ideal-Ring : is-prop is-nil-left-ideal-Ring is-prop-is-nil-left-ideal-Ring = is-prop-type-Prop is-nil-left-ideal-ring-Prop
Nil right ideals
module _ {l1 l2 : Level} (R : Ring l1) (I : right-ideal-Ring l2 R) where is-nil-right-ideal-ring-Prop : Prop (l1 ⊔ l2) is-nil-right-ideal-ring-Prop = Π-Prop ( type-right-ideal-Ring R I) ( λ x → is-nilpotent-element-ring-Prop R (inclusion-right-ideal-Ring R I x)) is-nil-right-ideal-Ring : UU (l1 ⊔ l2) is-nil-right-ideal-Ring = type-Prop is-nil-right-ideal-ring-Prop is-prop-is-nil-right-ideal-Ring : is-prop is-nil-right-ideal-Ring is-prop-is-nil-right-ideal-Ring = is-prop-type-Prop is-nil-right-ideal-ring-Prop
Nil ideals
module _ {l1 l2 : Level} (R : Ring l1) (I : ideal-Ring l2 R) where is-nil-ideal-ring-Prop : Prop (l1 ⊔ l2) is-nil-ideal-ring-Prop = Π-Prop ( type-ideal-Ring R I) ( λ x → is-nilpotent-element-ring-Prop R (inclusion-ideal-Ring R I x)) is-nil-ideal-Ring : UU (l1 ⊔ l2) is-nil-ideal-Ring = type-Prop is-nil-ideal-ring-Prop is-prop-is-nil-ideal-Ring : is-prop is-nil-ideal-Ring is-prop-is-nil-ideal-Ring = is-prop-type-Prop is-nil-ideal-ring-Prop