Top elements in posets
module order-theory.top-elements-posets where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.posets open import order-theory.top-elements-preorders
Idea
A largest element in a poset is an element t
such that x ≤ t
holds for
every x : P
.
Definition
module _ {l1 l2 : Level} (X : Poset l1 l2) where is-top-element-Poset-Prop : type-Poset X → Prop (l1 ⊔ l2) is-top-element-Poset-Prop = is-top-element-Preorder-Prop (preorder-Poset X) is-top-element-Poset : type-Poset X → UU (l1 ⊔ l2) is-top-element-Poset = is-top-element-Preorder (preorder-Poset X) is-prop-is-top-element-Poset : (x : type-Poset X) → is-prop (is-top-element-Poset x) is-prop-is-top-element-Poset = is-prop-is-top-element-Preorder (preorder-Poset X) has-top-element-Poset : UU (l1 ⊔ l2) has-top-element-Poset = has-top-element-Preorder (preorder-Poset X) all-elements-equal-has-top-element-Poset : all-elements-equal has-top-element-Poset all-elements-equal-has-top-element-Poset (pair x H) (pair y K) = eq-type-subtype ( is-top-element-Poset-Prop) ( antisymmetric-leq-Poset X x y (K x) (H y)) is-prop-has-top-element-Poset : is-prop has-top-element-Poset is-prop-has-top-element-Poset = is-prop-all-elements-equal all-elements-equal-has-top-element-Poset has-top-element-Poset-Prop : Prop (l1 ⊔ l2) pr1 has-top-element-Poset-Prop = has-top-element-Poset pr2 has-top-element-Poset-Prop = is-prop-has-top-element-Poset