Top elements in large posets
module order-theory.top-elements-large-posets where
Imports
open import foundation.universe-levels open import order-theory.dependent-products-large-posets open import order-theory.large-posets
Idea
We say that a large poset P
has a largest
element if it comes equipped with an element t : type-Large-Poset P lzero
such that x ≤ t
holds for every x : P
Definition
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) where record has-top-element-Large-Poset : UUω where field top-has-top-element-Large-Poset : type-Large-Poset P lzero is-top-element-top-has-top-element-Large-Poset : {l1 : Level} (x : type-Large-Poset P l1) → leq-Large-Poset P x top-has-top-element-Large-Poset open has-top-element-Large-Poset public
Properties
If P
is a family of large posets, then Π-Large-Poset P
has a largest element
module _ {α : Level → Level} {β : Level → Level → Level} {l1 : Level} {I : UU l1} (P : I → Large-Poset α β) where has-top-element-Π-Large-Poset : ((i : I) → has-top-element-Large-Poset (P i)) → has-top-element-Large-Poset (Π-Large-Poset P) top-has-top-element-Large-Poset ( has-top-element-Π-Large-Poset H) i = top-has-top-element-Large-Poset (H i) is-top-element-top-has-top-element-Large-Poset ( has-top-element-Π-Large-Poset H) x i = is-top-element-top-has-top-element-Large-Poset (H i) (x i)