The functoriality of fib
module foundation-core.functoriality-fibers-of-maps where
Imports
open import foundation-core.cones-over-cospans open import foundation-core.dependent-pair-types open import foundation-core.equality-dependent-pair-types open import foundation-core.fibers-of-maps open import foundation-core.functions open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.universe-levels
Idea
Any commuting square
induces a map between the fibers of the vertical maps
Definitions
Any cone induces a family of maps between the fibers of the vertical maps
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) where map-fib-cone : (x : A) → fib (pr1 c) x → fib g (f x) pr1 (map-fib-cone x t) = pr1 (pr2 c) (pr1 t) pr2 (map-fib-cone x t) = (inv (pr2 (pr2 c) (pr1 t))) ∙ (ap f (pr2 t)) map-fib-cone-id : {l1 l2 : Level} {B : UU l1} {X : UU l2} (g : B → X) (x : X) → map-fib-cone id g (triple g id refl-htpy) x ~ id map-fib-cone-id g .(g b) (pair b refl) = refl
Properties
Computing map-fib-cone
of a horizontal pasting of cones
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) where map-fib-pasting-horizontal-cone : (c : cone j h B) (d : cone i (pr1 c) A) → (x : X) → ( map-fib-cone (j ∘ i) h (pasting-horizontal-cone i j h c d) x) ~ ( (map-fib-cone j h c (i x)) ∘ (map-fib-cone i (pr1 c) d x)) map-fib-pasting-horizontal-cone (pair g (pair q K)) (pair f (pair p H)) .(f a) (pair a refl) = eq-pair-Σ ( refl) ( ( ap ( concat' (h (q (p a))) refl) ( distributive-inv-concat (ap j (H a)) (K (p a)))) ∙ ( ( assoc (inv (K (p a))) (inv (ap j (H a))) refl) ∙ ( ap ( concat (inv (K (p a))) (j (i (f a)))) ( ( ap (concat' (j (g (p a))) refl) (inv (ap-inv j (H a)))) ∙ ( inv (ap-concat j (inv (H a)) refl))))))
Computing map-fib-cone
of a horizontal pasting of cones
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) where map-fib-pasting-vertical-cone : (c : cone f g B) (d : cone (pr1 (pr2 c)) h A) (x : C) → ( ( map-fib-cone f (g ∘ h) (pasting-vertical-cone f g h c d) x) ∘ ( inv-map-compute-fib-comp (pr1 c) (pr1 d) x)) ~ ( ( inv-map-compute-fib-comp g h (f x)) ∘ ( map-Σ ( λ t → fib h (pr1 t)) ( map-fib-cone f g c x) ( λ t → map-fib-cone (pr1 (pr2 c)) h d (pr1 t)))) map-fib-pasting-vertical-cone (pair p (pair q H)) (pair p' (pair q' H')) .(p (p' a)) (pair (pair .(p' a) refl) (pair a refl)) = eq-pair-Σ refl ( ( right-unit) ∙ ( ( distributive-inv-concat (H (p' a)) (ap g (H' a))) ∙ ( ( ap ( concat (inv (ap g (H' a))) (f (p (p' a)))) ( inv right-unit)) ∙ ( ap ( concat' (g (h (q' a))) ( pr2 ( map-fib-cone f g ( triple p q H) ( p (p' a)) ( pair (p' a) refl)))) ( ( inv (ap-inv g (H' a))) ∙ ( ap (ap g) (inv right-unit)))))))
See also
- Equality proofs in the fiber of a map are characterized in
foundation.equality-fibers-of-maps
.