The functoriality of fib

module foundation-core.functoriality-fibers-of-maps where
Imports
open import foundation-core.cones-over-cospans
open import foundation-core.dependent-pair-types
open import foundation-core.equality-dependent-pair-types
open import foundation-core.fibers-of-maps
open import foundation-core.functions
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.universe-levels

Idea

Any commuting square

induces a map between the fibers of the vertical maps

Definitions

Any cone induces a family of maps between the fibers of the vertical maps

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4}
  (f : A  X) (g : B  X) (c : cone f g C)
  where

  map-fib-cone : (x : A)  fib (pr1 c) x  fib g (f x)
  pr1 (map-fib-cone x t) = pr1 (pr2 c) (pr1 t)
  pr2 (map-fib-cone x t) = (inv (pr2 (pr2 c) (pr1 t)))  (ap f (pr2 t))

map-fib-cone-id :
  {l1 l2 : Level} {B : UU l1} {X : UU l2} (g : B  X) (x : X) 
  map-fib-cone id g (triple g id refl-htpy) x ~ id
map-fib-cone-id g .(g b) (pair b refl) =
  refl

Properties

Computing map-fib-cone of a horizontal pasting of cones

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6}
  (i : X  Y) (j : Y  Z) (h : C  Z)
  where

  map-fib-pasting-horizontal-cone :
    (c : cone j h B) (d : cone i (pr1 c) A)  (x : X) 
    ( map-fib-cone (j  i) h (pasting-horizontal-cone i j h c d) x) ~
    ( (map-fib-cone j h c (i x))  (map-fib-cone i (pr1 c) d x))
  map-fib-pasting-horizontal-cone
    (pair g (pair q K)) (pair f (pair p H)) .(f a) (pair a refl) =
    eq-pair-Σ
      ( refl)
      ( ( ap
          ( concat' (h (q (p a))) refl)
          ( distributive-inv-concat (ap j (H a)) (K (p a)))) 
        ( ( assoc (inv (K (p a))) (inv (ap j (H a))) refl) 
          ( ap
            ( concat (inv (K (p a))) (j (i (f a))))
            ( ( ap (concat' (j (g (p a))) refl) (inv (ap-inv j (H a)))) 
              ( inv (ap-concat j (inv (H a)) refl))))))

Computing map-fib-cone of a horizontal pasting of cones

module _
  {l1 l2 l3 l4 l5 l6 : Level}
  {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6}
  (f : C  Z) (g : Y  Z) (h : X  Y)
  where

  map-fib-pasting-vertical-cone :
    (c : cone f g B) (d : cone (pr1 (pr2 c)) h A) (x : C) 
    ( ( map-fib-cone f (g  h) (pasting-vertical-cone f g h c d) x) 
      ( inv-map-compute-fib-comp (pr1 c) (pr1 d) x)) ~
    ( ( inv-map-compute-fib-comp g h (f x)) 
      ( map-Σ
        ( λ t  fib h (pr1 t))
        ( map-fib-cone f g c x)
        ( λ t  map-fib-cone (pr1 (pr2 c)) h d (pr1 t))))
  map-fib-pasting-vertical-cone
    (pair p (pair q H)) (pair p' (pair q' H')) .(p (p' a))
    (pair (pair .(p' a) refl) (pair a refl)) =
    eq-pair-Σ refl
      ( ( right-unit) 
        ( ( distributive-inv-concat (H (p' a)) (ap g (H' a))) 
          ( ( ap
              ( concat (inv (ap g (H' a))) (f (p (p' a))))
              ( inv right-unit)) 
            ( ap
              ( concat' (g (h (q' a)))
                ( pr2
                  ( map-fib-cone f g
                    ( triple p q H)
                    ( p (p' a))
                    ( pair (p' a) refl))))
              ( ( inv (ap-inv g (H' a))) 
                ( ap (ap g) (inv right-unit)))))))

See also