Free higher group actions
module higher-group-theory.free-higher-group-actions where
Imports
open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import higher-group-theory.higher-group-actions open import higher-group-theory.higher-groups open import higher-group-theory.orbits-higher-group-actions
Idea
A higher group action is said to be free if its type of orbits is a set.
Definition
module _ {l1 l2 : Level} (G : ∞-Group l1) (X : action-∞-Group l2 G) where is-free-action-∞-Group-Prop : Prop (l1 ⊔ l2) is-free-action-∞-Group-Prop = is-set-Prop (orbit-action-∞-Group G X) is-free-action-∞-Group : UU (l1 ⊔ l2) is-free-action-∞-Group = type-Prop is-free-action-∞-Group-Prop is-prop-is-free-action-∞-Group : is-prop is-free-action-∞-Group is-prop-is-free-action-∞-Group = is-prop-type-Prop is-free-action-∞-Group-Prop free-action-∞-Group : {l1 : Level} (l2 : Level) → ∞-Group l1 → UU (l1 ⊔ lsuc l2) free-action-∞-Group l2 G = type-subtype (is-free-action-∞-Group-Prop {l2 = l2} G)