Nilpotent elements in rings
module ring-theory.nilpotent-elements-rings where
Imports
open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.universe-levels open import ring-theory.nilpotent-elements-semirings open import ring-theory.powers-of-elements-rings open import ring-theory.rings open import ring-theory.subsets-rings
Idea
A nilpotent element in a ring is an element x
for which there is a natural
number n
such that x^n = 0
.
Definition
module _ {l : Level} (R : Ring l) where is-nilpotent-element-ring-Prop : type-Ring R → Prop l is-nilpotent-element-ring-Prop = is-nilpotent-element-semiring-Prop (semiring-Ring R) is-nilpotent-element-Ring : type-Ring R → UU l is-nilpotent-element-Ring = is-nilpotent-element-Semiring (semiring-Ring R) is-prop-is-nilpotent-element-Ring : (x : type-Ring R) → is-prop (is-nilpotent-element-Ring x) is-prop-is-nilpotent-element-Ring = is-prop-is-nilpotent-element-Semiring (semiring-Ring R)
Properties
Zero is nilpotent
is-nilpotent-zero-Ring : {l : Level} (R : Ring l) → is-nilpotent-element-Ring R (zero-Ring R) is-nilpotent-zero-Ring R = is-nilpotent-zero-Semiring (semiring-Ring R)
If x
and y
commute and are both nilpotent, then x + y
is nilpotent
is-nilpotent-add-Ring : {l : Level} (R : Ring l) → (x y : type-Ring R) → (mul-Ring R x y = mul-Ring R y x) → is-nilpotent-element-Ring R x → is-nilpotent-element-Ring R y → is-nilpotent-element-Ring R (add-Ring R x y) is-nilpotent-add-Ring R = is-nilpotent-add-Semiring (semiring-Ring R)
If x
is nilpotent, then so is -x
is-nilpotent-element-neg-Ring : {l : Level} (R : Ring l) → is-closed-under-negatives-subset-Ring R (is-nilpotent-element-ring-Prop R) is-nilpotent-element-neg-Ring R x H = apply-universal-property-trunc-Prop H ( is-nilpotent-element-ring-Prop R (neg-Ring R x)) ( λ (n , p) → intro-∃ n ( ( power-neg-Ring R n x) ∙ ( ( ap (mul-Ring R (power-Ring R n (neg-one-Ring R))) p) ∙ ( right-zero-law-mul-Ring R (power-Ring R n (neg-one-Ring R))))))
If x
is nilpotent and y
commutes with x
, then xy
is also nilpotent
module _ {l : Level} (R : Ring l) where is-nilpotent-element-mul-Ring : (x y : type-Ring R) → mul-Ring R x y = mul-Ring R y x → is-nilpotent-element-Ring R x → is-nilpotent-element-Ring R (mul-Ring R x y) is-nilpotent-element-mul-Ring = is-nilpotent-element-mul-Semiring (semiring-Ring R) is-nilpotent-element-mul-Ring' : (x y : type-Ring R) → mul-Ring R x y = mul-Ring R y x → is-nilpotent-element-Ring R x → is-nilpotent-element-Ring R (mul-Ring R y x) is-nilpotent-element-mul-Ring' = is-nilpotent-element-mul-Semiring' (semiring-Ring R)