Natural isomorphisms between functors on large precategories
module category-theory.natural-isomorphisms-large-precategories where
Imports
open import category-theory.functors-large-precategories open import category-theory.isomorphisms-large-precategories open import category-theory.large-precategories open import category-theory.natural-transformations-large-precategories open import foundation.universe-levels
Idea
A natural isomorphism γ
from functor F : C → D
to G : C → D
is a natural
transformation from F
to G
such that the morphism γ x : hom (F x) (G x)
is
an isomorphism, for every object x
in C
.
Definition
module _ {αC αD γF γG : Level → Level} {βC βD : Level → Level → Level} {C : Large-Precategory αC βC} {D : Large-Precategory αD βD} (F : functor-Large-Precategory C D γF) (G : functor-Large-Precategory C D γG) where record natural-isomorphism-Large-Precategory : UUω where constructor make-natural-isomorphism field obj-natural-isomorphism-Large-Precategory : { l1 : Level} (X : obj-Large-Precategory C l1) → iso-Large-Precategory D ( obj-functor-Large-Precategory F X) ( obj-functor-Large-Precategory G X) coherence-square-natural-isomorphism-Large-Precategory : { l1 l2 : Level} { X : obj-Large-Precategory C l1} { Y : obj-Large-Precategory C l2} ( f : type-hom-Large-Precategory C X Y) → square-Large-Precategory D ( hom-iso-Large-Precategory D ( obj-functor-Large-Precategory F X) ( obj-functor-Large-Precategory G X) ( obj-natural-isomorphism-Large-Precategory X)) ( hom-functor-Large-Precategory F f) ( hom-functor-Large-Precategory G f) ( hom-iso-Large-Precategory D ( obj-functor-Large-Precategory F Y) ( obj-functor-Large-Precategory G Y) ( obj-natural-isomorphism-Large-Precategory Y)) open natural-isomorphism-Large-Precategory public natural-transformation-natural-isomorphism-Large-Precategory : natural-isomorphism-Large-Precategory → natural-transformation-Large-Precategory F G obj-natural-transformation-Large-Precategory ( natural-transformation-natural-isomorphism-Large-Precategory γ) X = hom-iso-Large-Precategory D ( obj-functor-Large-Precategory F X) ( obj-functor-Large-Precategory G X) ( obj-natural-isomorphism-Large-Precategory γ X) coherence-square-natural-transformation-Large-Precategory (natural-transformation-natural-isomorphism-Large-Precategory γ) = coherence-square-natural-isomorphism-Large-Precategory γ