Contractible types
module foundation.contractible-types where
Imports
open import foundation-core.contractible-types public open import foundation.function-extensionality open import foundation.subuniverses open import foundation.unit-type open import foundation-core.constant-maps open import foundation-core.contractible-maps open import foundation-core.dependent-pair-types open import foundation-core.equivalences open import foundation-core.functions open import foundation-core.functoriality-dependent-pair-types open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.singleton-induction open import foundation-core.subtypes open import foundation-core.truncated-types open import foundation-core.truncation-levels open import foundation-core.universe-levels
Definition
The proposition of being contractible
is-contr-Prop : {l : Level} → UU l → Prop l pr1 (is-contr-Prop A) = is-contr A pr2 (is-contr-Prop A) = is-property-is-contr
The subuniverse of contractible types
Contr : (l : Level) → UU (lsuc l) Contr l = type-subuniverse is-contr-Prop type-Contr : {l : Level} → Contr l → UU l type-Contr A = pr1 A abstract is-contr-type-Contr : {l : Level} (A : Contr l) → is-contr (type-Contr A) is-contr-type-Contr A = pr2 A equiv-Contr : {l1 l2 : Level} (X : Contr l1) (Y : Contr l2) → UU (l1 ⊔ l2) equiv-Contr X Y = type-Contr X ≃ type-Contr Y equiv-eq-Contr : {l1 : Level} (X Y : Contr l1) → (X = Y) → equiv-Contr X Y equiv-eq-Contr X Y = equiv-eq-subuniverse is-contr-Prop X Y abstract is-equiv-equiv-eq-Contr : {l1 : Level} (X Y : Contr l1) → is-equiv (equiv-eq-Contr X Y) is-equiv-equiv-eq-Contr X Y = is-equiv-equiv-eq-subuniverse is-contr-Prop X Y eq-equiv-Contr : {l1 : Level} {X Y : Contr l1} → equiv-Contr X Y → (X = Y) eq-equiv-Contr = eq-equiv-subuniverse is-contr-Prop abstract center-Contr : (l : Level) → Contr l center-Contr l = pair (raise-unit l) is-contr-raise-unit contraction-Contr : {l : Level} (A : Contr l) → center-Contr l = A contraction-Contr A = eq-equiv-Contr ( equiv-is-contr is-contr-raise-unit (is-contr-type-Contr A)) abstract is-contr-Contr : (l : Level) → is-contr (Contr l) is-contr-Contr l = pair (center-Contr l) contraction-Contr
The predicate that a subuniverse contains any contractible types
contains-contractible-types-subuniverse : {l1 l2 : Level} → subuniverse l1 l2 → UU (lsuc l1 ⊔ l2) contains-contractible-types-subuniverse {l1} P = (X : UU l1) → is-contr X → is-in-subuniverse P X
The predicate that a subuniverse is closed under the is-contr
predicate
We state a general form involving two universes, and a more traditional form using a single universe
is-closed-under-is-contr-subuniverses : {l1 l2 l3 : Level} (P : subuniverse l1 l2) (Q : subuniverse l1 l3) → UU (lsuc l1 ⊔ l2 ⊔ l3) is-closed-under-is-contr-subuniverses P Q = (X : type-subuniverse P) → is-in-subuniverse Q (is-contr (inclusion-subuniverse P X)) is-closed-under-is-contr-subuniverse : {l1 l2 : Level} (P : subuniverse l1 l2) → UU (lsuc l1 ⊔ l2) is-closed-under-is-contr-subuniverse P = is-closed-under-is-contr-subuniverses P P
Properties
If two types are equivalent then so are the propositions that they are contractible
equiv-is-contr-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} → A ≃ B → is-contr A ≃ is-contr B equiv-is-contr-equiv {A = A} {B = B} e = equiv-prop ( is-property-is-contr) ( is-property-is-contr) ( is-contr-retract-of A ( pair (map-inv-equiv e) (pair (map-equiv e) (issec-map-inv-equiv e)))) ( is-contr-retract-of B ( pair (map-equiv e) (pair (map-inv-equiv e) (isretr-map-inv-equiv e))))
Contractible types are k
-truncated for any k
module _ {l : Level} {A : UU l} where abstract is-trunc-is-contr : (k : 𝕋) → is-contr A → is-trunc k A is-trunc-is-contr neg-two-𝕋 is-contr-A = is-contr-A is-trunc-is-contr (succ-𝕋 k) is-contr-A = is-trunc-succ-is-trunc k (is-trunc-is-contr k is-contr-A)
Contractibility of Σ-types where the dependent type is a proposition
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (a : A) (b : B a) where is-contr-Σ-is-prop : ((x : A) → is-prop (B x)) → ((x : A) → B x → a = x) → is-contr (Σ A B) pr1 (is-contr-Σ-is-prop p f) = pair a b pr2 (is-contr-Σ-is-prop p f) (pair x y) = eq-type-subtype ( λ x' → pair (B x') (p x')) ( f x y)
Equivalent characterizations of contractible types
module _ {l1 : Level} {A : UU l1} where dependent-universal-property-contr : (l : Level) (a : A) → UU (l1 ⊔ lsuc l) dependent-universal-property-contr l a = (P : A → UU l) → is-equiv (ev-point a {P}) universal-property-contr : (l : Level) (a : A) → UU (l1 ⊔ lsuc l) universal-property-contr l a = (X : UU l) → is-equiv (ev-point' a {X}) universal-property-dependent-universal-property-contr : (a : A) → ({l : Level} → dependent-universal-property-contr l a) → ({l : Level} → universal-property-contr l a) universal-property-dependent-universal-property-contr a dup-contr {l} X = dup-contr {l} (λ x → X) abstract is-equiv-ev-point-universal-property-contr : (a : A) → ({l : Level} → universal-property-contr l a) → is-equiv (ev-point' a {A}) is-equiv-ev-point-universal-property-contr a up-contr = up-contr A abstract is-contr-is-equiv-ev-point : (a : A) → is-equiv (ev-point' a {A}) → is-contr A pr1 (is-contr-is-equiv-ev-point a H) = a pr2 (is-contr-is-equiv-ev-point a H) = htpy-eq ( ap ( pr1) ( eq-is-contr' ( is-contr-map-is-equiv H a) ( pair (λ x → a) refl) ( pair id refl))) abstract is-contr-universal-property-contr : (a : A) → ({l : Level} → universal-property-contr l a) → is-contr A is-contr-universal-property-contr a up-contr = is-contr-is-equiv-ev-point a ( is-equiv-ev-point-universal-property-contr a up-contr) abstract is-contr-dependent-universal-property-contr : (a : A) → ({l : Level} → dependent-universal-property-contr l a) → is-contr A is-contr-dependent-universal-property-contr a dup-contr = is-contr-universal-property-contr a ( universal-property-dependent-universal-property-contr a dup-contr) abstract dependent-universal-property-contr-is-contr : (a : A) → is-contr A → {l : Level} → dependent-universal-property-contr l a dependent-universal-property-contr-is-contr a H {l} P = is-equiv-has-inverse ( ind-singleton-is-contr a H P) ( compute-ind-singleton-is-contr a H P) ( λ f → eq-htpy ( ind-singleton-is-contr a H ( λ x → ind-singleton-is-contr a H P (f a) x = f x) ( compute-ind-singleton-is-contr a H P (f a)))) equiv-dependent-universal-property-contr : (a : A) → is-contr A → {l : Level} (B : A → UU l) → ((x : A) → B x) ≃ B a pr1 (equiv-dependent-universal-property-contr a H P) = ev-point a pr2 (equiv-dependent-universal-property-contr a H P) = dependent-universal-property-contr-is-contr a H P apply-dependent-universal-property-contr : (a : A) → is-contr A → {l : Level} (B : A → UU l) → (B a → ((x : A) → B x)) apply-dependent-universal-property-contr a H P = map-inv-equiv (equiv-dependent-universal-property-contr a H P) abstract universal-property-contr-is-contr : (a : A) → is-contr A → {l : Level} → universal-property-contr l a universal-property-contr-is-contr a H = universal-property-dependent-universal-property-contr a ( dependent-universal-property-contr-is-contr a H) equiv-universal-property-contr : (a : A) → is-contr A → {l : Level} (X : UU l) → (A → X) ≃ X pr1 (equiv-universal-property-contr a H X) = ev-point' a pr2 (equiv-universal-property-contr a H X) = universal-property-contr-is-contr a H X apply-universal-property-contr : (a : A) → is-contr A → {l : Level} (X : UU l) → X → (A → X) apply-universal-property-contr a H X = map-inv-equiv (equiv-universal-property-contr a H X) abstract is-equiv-self-diagonal-is-equiv-diagonal : ({l : Level} (X : UU l) → is-equiv (λ x → const A X x)) → is-equiv (λ x → const A A x) is-equiv-self-diagonal-is-equiv-diagonal H = H A abstract is-contr-is-equiv-self-diagonal : is-equiv (λ x → const A A x) → is-contr A is-contr-is-equiv-self-diagonal H = tot (λ x → htpy-eq) (center (is-contr-map-is-equiv H id)) abstract is-contr-is-equiv-diagonal : ({l : Level} (X : UU l) → is-equiv (λ x → const A X x)) → is-contr A is-contr-is-equiv-diagonal H = is-contr-is-equiv-self-diagonal ( is-equiv-self-diagonal-is-equiv-diagonal H) abstract is-equiv-diagonal-is-contr : is-contr A → {l : Level} (X : UU l) → is-equiv (λ x → const A X x) is-equiv-diagonal-is-contr H X = is-equiv-has-inverse ( ev-point' (center H)) ( λ f → eq-htpy (λ x → ap f (contraction H x))) ( λ x → refl) equiv-diagonal-is-contr : {l : Level} (X : UU l) → is-contr A → X ≃ (A → X) pr1 (equiv-diagonal-is-contr X H) = const A X pr2 (equiv-diagonal-is-contr X H) = is-equiv-diagonal-is-contr H X