Truncated maps
module foundation.truncated-maps where
Imports
open import foundation-core.truncated-maps public open import foundation-core.cones-over-cospans open import foundation-core.dependent-pair-types open import foundation-core.fibers-of-maps open import foundation-core.functoriality-fibers-of-maps open import foundation-core.propositions open import foundation-core.pullbacks open import foundation-core.truncated-types open import foundation-core.truncation-levels open import foundation-core.universe-levels
Properties
Being a truncated map is a property
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-prop-is-trunc-map : (k : 𝕋) (f : A → B) → is-prop (is-trunc-map k f) is-prop-is-trunc-map k f = is-prop-Π (λ x → is-prop-is-trunc k (fib f x)) is-trunc-map-Prop : (k : 𝕋) → (A → B) → Prop (l1 ⊔ l2) pr1 (is-trunc-map-Prop k f) = is-trunc-map k f pr2 (is-trunc-map-Prop k f) = is-prop-is-trunc-map k f
Pullbacks of truncated maps are truncated maps
module _ {l1 l2 l3 l4 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) where abstract is-trunc-is-pullback : is-pullback f g c → is-trunc-map k g → is-trunc-map k (pr1 c) is-trunc-is-pullback pb is-trunc-g a = is-trunc-is-equiv k ( fib g (f a)) ( map-fib-cone f g c a) ( is-fiberwise-equiv-map-fib-cone-is-pullback f g c pb a) ( is-trunc-g (f a)) abstract is-trunc-is-pullback' : {l1 l2 l3 l4 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) → is-pullback f g c → is-trunc-map k f → is-trunc-map k (pr1 (pr2 c)) is-trunc-is-pullback' k f g (pair p (pair q H)) pb is-trunc-f = is-trunc-is-pullback k g f ( swap-cone f g (triple p q H)) ( is-pullback-swap-cone f g (triple p q H) pb) is-trunc-f