Central elements of monoids
module group-theory.central-elements-monoids where
Imports
open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.central-elements-semigroups open import group-theory.monoids
Idea
An element x
of a monoid M
is said to be central if xy = yx
for every
y : M
.
Definition
module _ {l : Level} (M : Monoid l) where is-central-element-monoid-Prop : type-Monoid M → Prop l is-central-element-monoid-Prop = is-central-element-semigroup-Prop (semigroup-Monoid M) is-central-element-Monoid : type-Monoid M → UU l is-central-element-Monoid = is-central-element-Semigroup (semigroup-Monoid M) is-prop-is-central-element-Monoid : (x : type-Monoid M) → is-prop (is-central-element-Monoid x) is-prop-is-central-element-Monoid = is-prop-is-central-element-Semigroup (semigroup-Monoid M)
Properties
The unit element is central
module _ {l : Level} (M : Monoid l) where is-central-element-unit-Monoid : is-central-element-Monoid M (unit-Monoid M) is-central-element-unit-Monoid y = left-unit-law-mul-Monoid M y ∙ inv (right-unit-law-mul-Monoid M y)
The product of two central elements is central
module _ {l : Level} (M : Monoid l) where is-central-element-mul-Monoid : (x y : type-Monoid M) → is-central-element-Monoid M x → is-central-element-Monoid M y → is-central-element-Monoid M (mul-Monoid M x y) is-central-element-mul-Monoid = is-central-element-mul-Semigroup (semigroup-Monoid M)