Posets
module order-theory.posets where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.preorders
Idea
A poset is a set equipped with a reflexive, antisymmetric, transitive relation that takes values in propositions.
Definition
is-antisymmetric-leq-Preorder : {l1 l2 : Level} (P : Preorder l1 l2) → UU (l1 ⊔ l2) is-antisymmetric-leq-Preorder P = (x y : type-Preorder P) → leq-Preorder P x y → leq-Preorder P y x → x = y Poset : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Poset l1 l2 = Σ (Preorder l1 l2) is-antisymmetric-leq-Preorder module _ {l1 l2 : Level} (X : Poset l1 l2) where preorder-Poset : Preorder l1 l2 preorder-Poset = pr1 X type-Poset : UU l1 type-Poset = type-Preorder preorder-Poset leq-Poset-Prop : (x y : type-Poset) → Prop l2 leq-Poset-Prop = leq-Preorder-Prop preorder-Poset leq-Poset : (x y : type-Poset) → UU l2 leq-Poset = leq-Preorder preorder-Poset is-prop-leq-Poset : (x y : type-Poset) → is-prop (leq-Poset x y) is-prop-leq-Poset = is-prop-leq-Preorder preorder-Poset concatenate-eq-leq-Poset : {x y z : type-Poset} → x = y → leq-Poset y z → leq-Poset x z concatenate-eq-leq-Poset = concatenate-eq-leq-Preorder preorder-Poset concatenate-leq-eq-Poset : {x y z : type-Poset} → leq-Poset x y → y = z → leq-Poset x z concatenate-leq-eq-Poset = concatenate-leq-eq-Preorder preorder-Poset refl-leq-Poset : (x : type-Poset) → leq-Poset x x refl-leq-Poset = refl-leq-Preorder preorder-Poset transitive-leq-Poset : (x y z : type-Poset) → leq-Poset y z → leq-Poset x y → leq-Poset x z transitive-leq-Poset = transitive-leq-Preorder preorder-Poset le-Poset-Prop : (x y : type-Poset) → Prop (l1 ⊔ l2) le-Poset-Prop = le-Preorder-Prop preorder-Poset le-Poset : (x y : type-Poset) → UU (l1 ⊔ l2) le-Poset = le-Preorder preorder-Poset is-prop-le-Poset : (x y : type-Poset) → is-prop (le-Poset x y) is-prop-le-Poset = is-prop-le-Preorder preorder-Poset antisymmetric-leq-Poset : (x y : type-Poset) → leq-Poset x y → leq-Poset y x → Id x y antisymmetric-leq-Poset = pr2 X is-set-type-Poset : is-set type-Poset is-set-type-Poset = is-set-prop-in-id ( λ x y → leq-Poset x y × leq-Poset y x) ( λ x y → is-prop-prod (is-prop-leq-Poset x y) (is-prop-leq-Poset y x)) ( λ x → pair (refl-leq-Poset x) (refl-leq-Poset x)) ( λ {x y (pair H K) → antisymmetric-leq-Poset x y H K}) set-Poset : Set l1 pr1 set-Poset = type-Poset pr2 set-Poset = is-set-type-Poset
Reasoning with inequalities in posets
Inequalities in preorders can be constructed by equational reasoning as follows:
calculate-in-Poset X
chain-of-inequalities
x ≤ y
by ineq-1
in-Poset X
≤ z
by ineq-2
in-Poset X
≤ v
by ineq-3
in-Poset X
Note, however, that in our setup of equational reasoning with inequalities it is not possible to mix inequalities with equalities or strict inequalities.
infixl 1 calculate-in-Poset_chain-of-inequalities_ infixl 0 step-calculate-in-Poset calculate-in-Poset_chain-of-inequalities_ : {l1 l2 : Level} (X : Poset l1 l2) (x : type-Poset X) → leq-Poset X x x calculate-in-Poset_chain-of-inequalities_ = refl-leq-Poset step-calculate-in-Poset : {l1 l2 : Level} (X : Poset l1 l2) {x y : type-Poset X} → leq-Poset X x y → (z : type-Poset X) → leq-Poset X y z → leq-Poset X x z step-calculate-in-Poset X {x} {y} u z v = transitive-leq-Poset X x y z v u syntax step-calculate-in-Poset X u z v = u ≤ z by v in-Poset X