Quotient rings

module ring-theory.quotient-rings where
Imports
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.universe-levels

open import ring-theory.homomorphisms-rings
open import ring-theory.ideals-rings
open import ring-theory.rings

Definitions

The universal property of quotient rings

precomp-quotient-Ring :
  {l1 l2 l3 l4 : Level} (R : Ring l1) (I : ideal-Ring l2 R)
  (S : Ring l3) (T : Ring l4) 
  (f : type-hom-Ring R S)
  ( H : (x : type-Ring R)  is-in-ideal-Ring R I x 
        map-hom-Ring R S f x  zero-Ring S) 
  type-hom-Ring S T 
  Σ ( type-hom-Ring R T)
    ( λ g 
      (x : type-Ring R) 
      is-in-ideal-Ring R I x  map-hom-Ring R T g x  zero-Ring T)
pr1 (precomp-quotient-Ring R I S T f H h) = comp-hom-Ring R S T h f
pr2 (precomp-quotient-Ring R I S T f H h) x K =
  ap (map-hom-Ring S T h) (H x K)  preserves-zero-hom-Ring S T h

universal-property-quotient-Ring :
  {l1 l2 l3 : Level} (l : Level) (R : Ring l1) (I : ideal-Ring l2 R)
  (S : Ring l3) (f : type-hom-Ring R S)
  ( H : (x : type-Ring R)  is-in-ideal-Ring R I x 
        map-hom-Ring R S f x  zero-Ring S) 
  UU (l1  l2  l3  lsuc l)
universal-property-quotient-Ring l R I S f H =
  (T : Ring l)  is-equiv (precomp-quotient-Ring R I S T f H)

The equivalence relation obtained from an ideal

{-
sim-congruence-ideal-Ring :
  {l1 l2 : Level} (R : Ring l1) (I : ideal-Ring l2 R) →
  type-Ring R → type-Ring R → UU {!!}
sim-congruence-ideal-Ring R I x y =
  sim-congruence-Normal-Subgroup
    ( group-Ring R)
    {!!}
    {!!}
    {!!}
    -}

The quotient ring

The universal property of the quotient ring