Quotient rings
module ring-theory.quotient-rings where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.universe-levels open import ring-theory.homomorphisms-rings open import ring-theory.ideals-rings open import ring-theory.rings
Definitions
The universal property of quotient rings
precomp-quotient-Ring : {l1 l2 l3 l4 : Level} (R : Ring l1) (I : ideal-Ring l2 R) (S : Ring l3) (T : Ring l4) → (f : type-hom-Ring R S) ( H : (x : type-Ring R) → is-in-ideal-Ring R I x → map-hom-Ring R S f x = zero-Ring S) → type-hom-Ring S T → Σ ( type-hom-Ring R T) ( λ g → (x : type-Ring R) → is-in-ideal-Ring R I x → map-hom-Ring R T g x = zero-Ring T) pr1 (precomp-quotient-Ring R I S T f H h) = comp-hom-Ring R S T h f pr2 (precomp-quotient-Ring R I S T f H h) x K = ap (map-hom-Ring S T h) (H x K) ∙ preserves-zero-hom-Ring S T h universal-property-quotient-Ring : {l1 l2 l3 : Level} (l : Level) (R : Ring l1) (I : ideal-Ring l2 R) (S : Ring l3) (f : type-hom-Ring R S) ( H : (x : type-Ring R) → is-in-ideal-Ring R I x → map-hom-Ring R S f x = zero-Ring S) → UU (l1 ⊔ l2 ⊔ l3 ⊔ lsuc l) universal-property-quotient-Ring l R I S f H = (T : Ring l) → is-equiv (precomp-quotient-Ring R I S T f H)
The equivalence relation obtained from an ideal
{- sim-congruence-ideal-Ring : {l1 l2 : Level} (R : Ring l1) (I : ideal-Ring l2 R) → type-Ring R → type-Ring R → UU {!!} sim-congruence-ideal-Ring R I x y = sim-congruence-Normal-Subgroup ( group-Ring R) {!!} {!!} {!!} -}