Σ-closed reflective subuniverses
module orthogonal-factorization-systems.sigma-closed-reflective-subuniverses where
Imports
open import foundation.dependent-pair-types open import foundation.functions open import foundation.propositions open import foundation.universe-levels open import orthogonal-factorization-systems.modal-operators open import orthogonal-factorization-systems.reflective-subuniverses
Idea
A reflective subuniverse is Σ-closed, or dependent-pair-closed, if its modal types are closed under the formation of dependent pair types.
Definition
Σ-closed modal operators
We say a modal operator ○
is Σ-closed if for every type X
such that for
every term of ○ X
and for every type family P
over X
there is a section of
○ ∘ P
, then there is also a term of ○ (Σ X P)
.
Note: this is not well-established terminology.
is-Σ-closed-operator-modality : {l1 l2 : Level} → operator-modality l1 l2 → UU (lsuc l1 ⊔ l2) is-Σ-closed-operator-modality {l1} ○ = (X : UU l1) → ○ X → (P : X → UU l1) → ((x : X) → ○ (P x)) → ○ (Σ X P)
Σ-closed reflective subuniverses
is-Σ-closed-reflective-subuniverse : {l lM : Level} (U : reflective-subuniverse l lM) → UU (lsuc l ⊔ lM) is-Σ-closed-reflective-subuniverse (○ , unit-○ , is-modal' , _) = is-Σ-closed-operator-modality (type-Prop ∘ is-modal') Σ-closed-reflective-subuniverse : (l lM : Level) → UU (lsuc l ⊔ lsuc lM) Σ-closed-reflective-subuniverse l lM = Σ ( reflective-subuniverse l lM) ( is-Σ-closed-reflective-subuniverse)
See also
The equivalent notions of
References
- Egbert Rijke, Michael Shulman, Bas Spitters, Modalities in homotopy type theory, Logical Methods in Computer Science, Volume 16, Issue 1, 2020 (arXiv:1706.07526, doi:10.23638)