The category of groups
module group-theory.category-of-groups where
Imports
open import category-theory.large-categories open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.groups open import group-theory.isomorphisms-groups open import group-theory.precategory-of-groups
Definition
is-category-Group : is-category-Large-Precategory Group-Large-Precategory is-category-Group G = fundamental-theorem-id ( is-contr-total-iso-Group G) ( iso-eq-Group G) eq-iso-Group : {l : Level} (G H : Group l) → type-iso-Group G H → Id G H eq-iso-Group G H = map-inv-is-equiv (is-category-Group G H) Group-Large-Category : Large-Category lsuc (λ l1 l2 → l1 ⊔ l2) precat-Large-Category Group-Large-Category = Group-Large-Precategory is-category-Large-Category Group-Large-Category = is-category-Group