The Well-Ordering Principle of the standard finite types
module elementary-number-theory.well-ordering-principle-standard-finite-types where
Imports
open import elementary-number-theory.inequality-standard-finite-types open import elementary-number-theory.modular-arithmetic-standard-finite-types open import elementary-number-theory.natural-numbers open import elementary-number-theory.well-ordering-principle-natural-numbers open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.decidable-subtypes open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equivalence-extensionality open import foundation.equivalences open import foundation.existential-quantification open import foundation.functions open import foundation.functoriality-coproduct-types open import foundation.functoriality-dependent-pair-types open import foundation.functoriality-propositional-truncation open import foundation.hilberts-epsilon-operators open import foundation.identity-types open import foundation.negation open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.type-arithmetic-coproduct-types open import foundation.type-arithmetic-empty-type open import foundation.type-arithmetic-unit-type open import foundation.unit-type open import foundation.universe-levels open import univalent-combinatorics.counting open import univalent-combinatorics.decidable-dependent-pair-types open import univalent-combinatorics.standard-finite-types
Idea
The standard finite types inherit a well-ordering principle from the natural numbers
Properties
For any decidable family P
over Fin n
, if P x
doesn't hold for all x
then there exists an x
for which P x
is false
exists-not-not-forall-Fin : {l : Level} (k : ℕ) {P : Fin k → UU l} → (is-decidable-fam P) → ¬ ((x : Fin k) → P x) → Σ (Fin k) (λ x → ¬ (P x)) exists-not-not-forall-Fin {l} zero-ℕ d H = ex-falso (H ind-empty) exists-not-not-forall-Fin {l} (succ-ℕ k) {P} d H with d (inr star) ... | inl p = T ( exists-not-not-forall-Fin k ( λ x → d (inl x)) ( λ f → H (ind-coprod P f (ind-unit p)))) where T : Σ (Fin k) (λ x → ¬ (P (inl x))) → Σ (Fin (succ-ℕ k)) (λ x → ¬ (P x)) T z = pair (inl (pr1 z)) (pr2 z) ... | inr f = pair (inr star) f exists-not-not-forall-count : {l1 l2 : Level} {X : UU l1} (P : X → UU l2) → (is-decidable-fam P) → count X → ¬ ((x : X) → P x) → Σ X (λ x → ¬ (P x)) exists-not-not-forall-count {l1} {l2} {X} P p e = ( g) ∘ ( ( exists-not-not-forall-Fin ( number-of-elements-count e) ( p ∘ map-equiv-count e)) ∘ f) where k : ℕ k = number-of-elements-count e P' : Fin k → UU l2 P' = P ∘ map-equiv (pr2 e) f : ¬ ((x : X) → P x) → ¬ ((x : Fin k) → P' x) f nf f' = nf ( λ x → tr ( P) ( htpy-eq-equiv (right-inverse-law-equiv (pr2 e)) x) ( f' (map-inv-equiv (pr2 e) x))) g : Σ (Fin k) (λ x → ¬ (P' x)) → Σ X (λ x → ¬ (P x)) pr1 (g (pair l np)) = map-equiv (pr2 e) l pr2 (g (pair l np)) x = np x
is-lower-bound-Fin : {l : Level} (k : ℕ) (P : Fin k → UU l) → Fin k → UU l is-lower-bound-Fin k P x = (y : Fin k) → P y → leq-Fin k x y abstract is-prop-is-lower-bound-Fin : {l : Level} (k : ℕ) {P : Fin k → UU l} (x : Fin k) → is-prop (is-lower-bound-Fin k P x) is-prop-is-lower-bound-Fin k x = is-prop-Π (λ y → is-prop-function-type (is-prop-leq-Fin k x y)) is-lower-bound-fin-Prop : {l : Level} (k : ℕ) (P : Fin k → UU l) (x : Fin k) → Prop l pr1 (is-lower-bound-fin-Prop k P x) = is-lower-bound-Fin k P x pr2 (is-lower-bound-fin-Prop k P x) = is-prop-is-lower-bound-Fin k x minimal-element-Fin : {l : Level} (k : ℕ) (P : Fin k → UU l) → UU l minimal-element-Fin k P = Σ (Fin k) (λ x → (P x) × is-lower-bound-Fin k P x) abstract all-elements-equal-minimal-element-Fin : {l : Level} (k : ℕ) (P : subtype l (Fin k)) → all-elements-equal (minimal-element-Fin k (is-in-subtype P)) all-elements-equal-minimal-element-Fin k P (pair x (pair p l)) (pair y (pair q m)) = eq-type-subtype ( λ t → prod-Prop (P t) (is-lower-bound-fin-Prop k (is-in-subtype P) t)) ( antisymmetric-leq-Fin k x y (l y q) (m x p)) abstract is-prop-minimal-element-Fin : {l : Level} (k : ℕ) (P : subtype l (Fin k)) → is-prop (minimal-element-Fin k (is-in-subtype P)) is-prop-minimal-element-Fin k P = is-prop-all-elements-equal (all-elements-equal-minimal-element-Fin k P) minimal-element-Fin-Prop : {l : Level} (k : ℕ) (P : subtype l (Fin k)) → Prop l pr1 (minimal-element-Fin-Prop k P) = minimal-element-Fin k (is-in-subtype P) pr2 (minimal-element-Fin-Prop k P) = is-prop-minimal-element-Fin k P is-lower-bound-inl-Fin : {l : Level} (k : ℕ) {P : Fin (succ-ℕ k) → UU l} {x : Fin k} → is-lower-bound-Fin k (P ∘ inl) x → is-lower-bound-Fin (succ-ℕ k) P (inl-Fin k x) is-lower-bound-inl-Fin k H (inl y) p = H y p is-lower-bound-inl-Fin k {P} {x} H (inr star) p = ( leq-neg-one-Fin k (inl x)) well-ordering-principle-Σ-Fin : {l : Level} (k : ℕ) {P : Fin k → UU l} → ((x : Fin k) → is-decidable (P x)) → Σ (Fin k) P → minimal-element-Fin k P pr1 (well-ordering-principle-Σ-Fin (succ-ℕ k) d (pair (inl x) p)) = inl (pr1 (well-ordering-principle-Σ-Fin k (λ x' → d (inl x')) (pair x p))) pr1 (pr2 (well-ordering-principle-Σ-Fin (succ-ℕ k) d (pair (inl x) p))) = pr1 (pr2 (well-ordering-principle-Σ-Fin k (λ x' → d (inl x')) (pair x p))) pr2 (pr2 (well-ordering-principle-Σ-Fin (succ-ℕ k) d (pair (inl x) p))) = is-lower-bound-inl-Fin k (pr2 (pr2 m)) where m = well-ordering-principle-Σ-Fin k (λ x' → d (inl x')) (pair x p) well-ordering-principle-Σ-Fin (succ-ℕ k) {P} d (pair (inr star) p) with is-decidable-Σ-Fin k (λ t → d (inl t)) ... | inl t = pair ( inl (pr1 m)) ( pair (pr1 (pr2 m)) (is-lower-bound-inl-Fin k (pr2 (pr2 m)))) where m = well-ordering-principle-Σ-Fin k (λ x' → d (inl x')) t ... | inr f = pair ( inr star) ( pair p g) where g : (y : Fin (succ-ℕ k)) → P y → leq-Fin (succ-ℕ k) (neg-one-Fin k) y g (inl y) q = ex-falso (f (pair y q)) g (inr star) q = refl-leq-Fin (succ-ℕ k) (neg-one-Fin k) well-ordering-principle-∃-Fin : {l : Level} (k : ℕ) (P : decidable-subtype l (Fin k)) → ∃ (Fin k) (is-in-decidable-subtype P) → minimal-element-Fin k (is-in-decidable-subtype P) well-ordering-principle-∃-Fin k P H = apply-universal-property-trunc-Prop H ( minimal-element-Fin-Prop k (subtype-decidable-subtype P)) ( well-ordering-principle-Σ-Fin k ( is-decidable-decidable-subtype P))
Hilbert's epsilon operator for decidable subtypes of standard finite types
ε-operator-decidable-subtype-Fin : {l : Level} (k : ℕ) (P : decidable-subtype l (Fin k)) → ε-operator-Hilbert (type-decidable-subtype P) ε-operator-decidable-subtype-Fin {l} zero-ℕ P t = ex-falso (apply-universal-property-trunc-Prop t empty-Prop pr1) ε-operator-decidable-subtype-Fin {l} (succ-ℕ k) P t = map-Σ ( is-in-decidable-subtype P) ( mod-succ-ℕ k) ( λ x → id) ( ε-operator-total-Q ( map-trunc-Prop ( map-Σ ( type-Prop ∘ Q) ( nat-Fin (succ-ℕ k)) ( λ x → tr (is-in-decidable-subtype P) (inv (issec-nat-Fin k x)))) ( t))) where Q : ℕ → Prop l Q n = subtype-decidable-subtype P (mod-succ-ℕ k n) is-decidable-Q : (n : ℕ) → is-decidable (type-Prop (Q n)) is-decidable-Q n = is-decidable-decidable-subtype P (mod-succ-ℕ k n) ε-operator-total-Q : ε-operator-Hilbert (type-subtype Q) ε-operator-total-Q = ε-operator-decidable-subtype-ℕ Q is-decidable-Q
abstract elim-trunc-decidable-fam-Fin : {l1 : Level} {k : ℕ} {B : Fin k → UU l1} → ((x : Fin k) → is-decidable (B x)) → type-trunc-Prop (Σ (Fin k) B) → Σ (Fin k) B elim-trunc-decidable-fam-Fin {l1} {zero-ℕ} {B} d y = ex-falso (is-empty-type-trunc-Prop pr1 y) elim-trunc-decidable-fam-Fin {l1} {succ-ℕ k} {B} d y with d (inr star) ... | inl x = pair (inr star) x ... | inr f = map-Σ-map-base inl B ( elim-trunc-decidable-fam-Fin {l1} {k} {B ∘ inl} ( λ x → d (inl x)) ( map-equiv-trunc-Prop ( ( ( right-unit-law-coprod-is-empty ( Σ (Fin k) (B ∘ inl)) ( B (inr star)) f) ∘e ( equiv-coprod id-equiv (left-unit-law-Σ (B ∘ inr)))) ∘e ( right-distributive-Σ-coprod (Fin k) unit B)) ( y)))