Magmas
module structured-types.magmas where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.unital-binary-operations open import foundation.universe-levels
Idea
A magma is a type equipped with a binary operation.
Definition
Magma : (l : Level) → UU (lsuc l) Magma l = Σ (UU l) (λ A → A → A → A) module _ {l : Level} (M : Magma l) where type-Magma : UU l type-Magma = pr1 M mul-Magma : type-Magma → type-Magma → type-Magma mul-Magma = pr2 M mul-Magma' : type-Magma → type-Magma → type-Magma mul-Magma' x y = mul-Magma y x
Structures
Unital magmas
is-unital-Magma : {l : Level} (M : Magma l) → UU l is-unital-Magma M = is-unital (mul-Magma M) Unital-Magma : (l : Level) → UU (lsuc l) Unital-Magma l = Σ (Magma l) is-unital-Magma magma-Unital-Magma : {l : Level} → Unital-Magma l → Magma l magma-Unital-Magma M = pr1 M is-unital-magma-Unital-Magma : {l : Level} (M : Unital-Magma l) → is-unital-Magma (magma-Unital-Magma M) is-unital-magma-Unital-Magma M = pr2 M
Semigroups
is-semigroup-Magma : {l : Level} → Magma l → UU l is-semigroup-Magma M = (x y z : type-Magma M) → Id (mul-Magma M (mul-Magma M x y) z) (mul-Magma M x (mul-Magma M y z))
Commutative magmas
is-commutative-Magma : {l : Level} → Magma l → UU l is-commutative-Magma M = (x y : type-Magma M) → Id (mul-Magma M x y) (mul-Magma M y x)
The structure of a commutative monoid on magmas
is-commutative-monoid-Magma : {l : Level} → Magma l → UU l is-commutative-monoid-Magma M = ((is-semigroup-Magma M) × (is-unital-Magma M)) × (is-commutative-Magma M) unit-is-commutative-monoid-Magma : {l : Level} (M : Magma l) → is-commutative-monoid-Magma M → type-Magma M unit-is-commutative-monoid-Magma M H = pr1 (pr2 (pr1 H))