Sums of natural numbers
module elementary-number-theory.sums-of-natural-numbers where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import foundation.constant-maps open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.functions open import foundation.homotopies open import foundation.identity-types open import foundation.unit-type open import foundation.universe-levels open import lists.lists open import univalent-combinatorics.counting open import univalent-combinatorics.standard-finite-types
Idea
The values of a map f : X → ℕ
out of a finite type X
can be summed up.
Definition
Sums of lists of natural numbers
sum-list-ℕ : list ℕ → ℕ sum-list-ℕ = fold-list 0 add-ℕ
Sums of natural numbers indexed by a standard finite type
sum-Fin-ℕ : (k : ℕ) → (Fin k → ℕ) → ℕ sum-Fin-ℕ zero-ℕ f = zero-ℕ sum-Fin-ℕ (succ-ℕ k) f = (sum-Fin-ℕ k (λ x → f (inl x))) +ℕ (f (inr star))
Sums of natural numbers indexed by a type equipped with a counting
sum-count-ℕ : {l : Level} {A : UU l} (e : count A) → (f : A → ℕ) → ℕ sum-count-ℕ (pair k e) f = sum-Fin-ℕ k (f ∘ (map-equiv e))
Bounded sums of natural numbers
bounded-sum-ℕ : (u : ℕ) → ((x : ℕ) → le-ℕ x u → ℕ) → ℕ bounded-sum-ℕ zero-ℕ f = zero-ℕ bounded-sum-ℕ (succ-ℕ u) f = add-ℕ ( bounded-sum-ℕ u (λ x H → f x (preserves-le-succ-ℕ x u H))) ( f u (succ-le-ℕ u))
Properties
Sums are invariant under homotopy
abstract htpy-sum-Fin-ℕ : (k : ℕ) {f g : Fin k → ℕ} (H : f ~ g) → sum-Fin-ℕ k f = sum-Fin-ℕ k g htpy-sum-Fin-ℕ zero-ℕ H = refl htpy-sum-Fin-ℕ (succ-ℕ k) H = ap-add-ℕ ( htpy-sum-Fin-ℕ k (λ x → H (inl x))) ( H (inr star)) abstract htpy-sum-count-ℕ : {l : Level} {A : UU l} (e : count A) {f g : A → ℕ} (H : f ~ g) → sum-count-ℕ e f = sum-count-ℕ e g htpy-sum-count-ℕ (pair k e) H = htpy-sum-Fin-ℕ k (H ·r (map-equiv e))
Summing up the same value m
times is multiplication by m
abstract constant-sum-Fin-ℕ : (m n : ℕ) → sum-Fin-ℕ m (const (Fin m) ℕ n) = m *ℕ n constant-sum-Fin-ℕ zero-ℕ n = refl constant-sum-Fin-ℕ (succ-ℕ m) n = ap (_+ℕ n) (constant-sum-Fin-ℕ m n) abstract constant-sum-count-ℕ : {l : Level} {A : UU l} (e : count A) (n : ℕ) → sum-count-ℕ e (const A ℕ n) = (number-of-elements-count e) *ℕ n constant-sum-count-ℕ (pair m e) n = constant-sum-Fin-ℕ m n
Each of the summands is less than or equal to the total sum
-- leq-sum-Fin-ℕ : -- {k : ℕ} (f : Fin k → ℕ) (x : Fin k) → leq-ℕ (f x) (sum-Fin-ℕ f) -- leq-sum-Fin-ℕ {succ-ℕ k} f x = {!leq-add-ℕ!}