Matrices on rings
module linear-algebra.matrices-on-rings where
Imports
open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.universe-levels open import linear-algebra.constant-matrices open import linear-algebra.functoriality-matrices open import linear-algebra.matrices open import linear-algebra.vectors open import linear-algebra.vectors-on-rings open import ring-theory.rings
Definitions
Matrices
module _ {l : Level} (R : Ring l) where matrix-Ring : ℕ → ℕ → UU l matrix-Ring m n = matrix (type-Ring R) m n
The zero matrix
module _ {l : Level} (R : Ring l) where zero-matrix-Ring : {m n : ℕ} → matrix-Ring R m n zero-matrix-Ring = constant-matrix (zero-Ring R)
Addition of matrices on rings
module _ {l : Level} (R : Ring l) where add-matrix-Ring : {m n : ℕ} (A B : matrix-Ring R m n) → matrix-Ring R m n add-matrix-Ring = binary-map-matrix (add-Ring R)
Properties
Addition of matrices is associative
module _ {l : Level} (R : Ring l) where associative-add-matrix-Ring : {m n : ℕ} (A B C : matrix-Ring R m n) → Id ( add-matrix-Ring R (add-matrix-Ring R A B) C) ( add-matrix-Ring R A (add-matrix-Ring R B C)) associative-add-matrix-Ring empty-vec empty-vec empty-vec = refl associative-add-matrix-Ring (v ∷ A) (w ∷ B) (z ∷ C) = ap-binary _∷_ ( associative-add-vec-Ring R v w z) ( associative-add-matrix-Ring A B C)
Addition of matrices is commutative
module _ {l : Level} (R : Ring l) where commutative-add-matrix-Ring : {m n : ℕ} (A B : matrix-Ring R m n) → Id (add-matrix-Ring R A B) (add-matrix-Ring R B A) commutative-add-matrix-Ring empty-vec empty-vec = refl commutative-add-matrix-Ring (v ∷ A) (w ∷ B) = ap-binary _∷_ ( commutative-add-vec-Ring R v w) ( commutative-add-matrix-Ring A B)
Left unit law for addition of matrices
module _ {l : Level} (R : Ring l) where left-unit-law-add-matrix-Ring : {m n : ℕ} (A : matrix-Ring R m n) → Id (add-matrix-Ring R (zero-matrix-Ring R) A) A left-unit-law-add-matrix-Ring empty-vec = refl left-unit-law-add-matrix-Ring (v ∷ A) = ap-binary _∷_ ( left-unit-law-add-vec-Ring R v) ( left-unit-law-add-matrix-Ring A)
Right unit law for addition of matrices
module _ {l : Level} (R : Ring l) where right-unit-law-add-matrix-Ring : {m n : ℕ} (A : matrix-Ring R m n) → Id (add-matrix-Ring R A (zero-matrix-Ring R)) A right-unit-law-add-matrix-Ring empty-vec = refl right-unit-law-add-matrix-Ring (v ∷ A) = ap-binary _∷_ ( right-unit-law-add-vec-Ring R v) ( right-unit-law-add-matrix-Ring A)