Composition of Cauchy series of species of types in subuniverses
module species.composition-cauchy-series-species-of-types-in-subuniverses where
Imports
open import foundation.equivalences open import foundation.functions open import foundation.subuniverses open import foundation.universe-levels open import species.cauchy-composition-species-of-types open import species.cauchy-composition-species-of-types-in-subuniverses open import species.cauchy-series-species-of-types open import species.cauchy-series-species-of-types-in-subuniverses open import species.composition-cauchy-series-species-of-types open import species.species-of-types-in-subuniverses
Idea
The composition of Cauchy series of two species of subuniverse S
and T
at
X
is defined as the Cauchy series of S
applied to the Cauchy series of T
at X
Definition
module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l5) where composition-cauchy-series-species-subuniverse : UU (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5) composition-cauchy-series-species-subuniverse = cauchy-series-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S) ( cauchy-series-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T) ( X))
Property
Equivalent form with species of types
module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l5) where equiv-composition-cauchy-series-Σ-extension-species-subuniverse : composition-cauchy-series-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S)) ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T)) ( X) ≃ composition-cauchy-series-species-subuniverse P Q S T X equiv-composition-cauchy-series-Σ-extension-species-subuniverse = ( inv-equiv ( equiv-cauchy-series-Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S) ( cauchy-series-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T) ( X)))) ∘e ( equiv-cauchy-series-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S)) ( cauchy-series-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T)) ( X)) ( cauchy-series-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T) ( X)) ( inv-equiv ( equiv-cauchy-series-Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T) ( X))))
The Cauchy series associated to the composition of the species S
and T
is the composition of their Cauchy series
module _ {l1 l2 l3 l4 l5 : Level} (P : subuniverse l1 l2) (Q : global-subuniverse id) (C1 : is-closed-under-cauchy-composition-species-subuniverse P Q) (C2 : is-closed-under-Σ-subuniverse P) (S : species-subuniverse P (subuniverse-global-subuniverse Q l3)) (T : species-subuniverse P (subuniverse-global-subuniverse Q l4)) (X : UU l5) where equiv-cauchy-series-composition-species-subuniverse : cauchy-series-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4)) ( cauchy-composition-species-subuniverse P Q C1 C2 S T) ( X) ≃ composition-cauchy-series-species-subuniverse P Q S T X equiv-cauchy-series-composition-species-subuniverse = ( equiv-composition-cauchy-series-Σ-extension-species-subuniverse P Q S T ( X)) ∘e ( ( equiv-cauchy-series-composition-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S)) ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T)) ( X)) ∘e ( ( equiv-cauchy-series-equiv-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4)) ( cauchy-composition-species-subuniverse P Q C1 C2 S T)) ( cauchy-composition-species-types ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l3) ( S)) ( Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q l4) ( T))) ( preserves-cauchy-composition-Σ-extension-species-subuniverse ( P) ( Q) ( C1) ( C2) ( S) ( T)) ( X)) ∘e ( equiv-cauchy-series-Σ-extension-species-subuniverse ( P) ( subuniverse-global-subuniverse Q (lsuc l1 ⊔ l2 ⊔ l3 ⊔ l4)) ( cauchy-composition-species-subuniverse P Q C1 C2 S T) ( X))))