Subsets of commutative monoids

module group-theory.subsets-commutative-monoids where
Imports
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.universe-levels

open import group-theory.commutative-monoids
open import group-theory.subsets-monoids

Idea

A subset of a commutative monoid M is a subset of the underlying type of M.

Definitions

Subsets of commutative monoids

subset-Commutative-Monoid :
  {l1 : Level} (l2 : Level) (M : Commutative-Monoid l1)  UU (l1  lsuc l2)
subset-Commutative-Monoid l2 M =
  subset-Monoid l2 (monoid-Commutative-Monoid M)

module _
  {l1 l2 : Level} (M : Commutative-Monoid l1)
  (P : subset-Commutative-Monoid l2 M)
  where

  is-in-subset-Commutative-Monoid : type-Commutative-Monoid M  UU l2
  is-in-subset-Commutative-Monoid =
    is-in-subset-Monoid (monoid-Commutative-Monoid M) P

  is-prop-is-in-subset-Commutative-Monoid :
    (x : type-Commutative-Monoid M) 
    is-prop (is-in-subset-Commutative-Monoid x)
  is-prop-is-in-subset-Commutative-Monoid =
    is-prop-is-in-subset-Monoid (monoid-Commutative-Monoid M) P

  type-subset-Commutative-Monoid : UU (l1  l2)
  type-subset-Commutative-Monoid =
    type-subset-Monoid (monoid-Commutative-Monoid M) P

  is-set-type-subset-Commutative-Monoid : is-set type-subset-Commutative-Monoid
  is-set-type-subset-Commutative-Monoid =
    is-set-type-subset-Monoid (monoid-Commutative-Monoid M) P

  set-subset-Commutative-Monoid : Set (l1  l2)
  set-subset-Commutative-Monoid =
    set-subset-Monoid (monoid-Commutative-Monoid M) P

  inclusion-subset-Commutative-Monoid :
    type-subset-Commutative-Monoid  type-Commutative-Monoid M
  inclusion-subset-Commutative-Monoid =
    inclusion-subset-Monoid (monoid-Commutative-Monoid M) P

  ap-inclusion-subset-Commutative-Monoid :
    (x y : type-subset-Commutative-Monoid)  x  y 
    inclusion-subset-Commutative-Monoid x 
    inclusion-subset-Commutative-Monoid y
  ap-inclusion-subset-Commutative-Monoid =
    ap-inclusion-subset-Monoid (monoid-Commutative-Monoid M) P

  is-in-subset-inclusion-subset-Commutative-Monoid :
    (x : type-subset-Commutative-Monoid) 
    is-in-subset-Commutative-Monoid (inclusion-subset-Commutative-Monoid x)
  is-in-subset-inclusion-subset-Commutative-Monoid =
    is-in-subset-inclusion-subset-Monoid (monoid-Commutative-Monoid M) P

The condition that a subset contains the unit

  contains-unit-subset-commutative-monoid-Prop : Prop l2
  contains-unit-subset-commutative-monoid-Prop =
    contains-unit-subset-monoid-Prop (monoid-Commutative-Monoid M) P

  contains-unit-subset-Commutative-Monoid : UU l2
  contains-unit-subset-Commutative-Monoid =
    contains-unit-subset-Monoid (monoid-Commutative-Monoid M) P

The condition that a subset is closed under multiplication

  is-closed-under-multiplication-subset-commutative-monoid-Prop : Prop (l1  l2)
  is-closed-under-multiplication-subset-commutative-monoid-Prop =
    is-closed-under-multiplication-subset-monoid-Prop
      ( monoid-Commutative-Monoid M)
      ( P)

  is-closed-under-multiplication-subset-Commutative-Monoid : UU (l1  l2)
  is-closed-under-multiplication-subset-Commutative-Monoid =
    is-closed-under-multiplication-subset-Monoid (monoid-Commutative-Monoid M) P