Subsets of commutative monoids
module group-theory.subsets-commutative-monoids where
Imports
open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.subsets-monoids
Idea
A subset of a commutative monoid M
is a subset of the underlying type of M
.
Definitions
Subsets of commutative monoids
subset-Commutative-Monoid : {l1 : Level} (l2 : Level) (M : Commutative-Monoid l1) → UU (l1 ⊔ lsuc l2) subset-Commutative-Monoid l2 M = subset-Monoid l2 (monoid-Commutative-Monoid M) module _ {l1 l2 : Level} (M : Commutative-Monoid l1) (P : subset-Commutative-Monoid l2 M) where is-in-subset-Commutative-Monoid : type-Commutative-Monoid M → UU l2 is-in-subset-Commutative-Monoid = is-in-subset-Monoid (monoid-Commutative-Monoid M) P is-prop-is-in-subset-Commutative-Monoid : (x : type-Commutative-Monoid M) → is-prop (is-in-subset-Commutative-Monoid x) is-prop-is-in-subset-Commutative-Monoid = is-prop-is-in-subset-Monoid (monoid-Commutative-Monoid M) P type-subset-Commutative-Monoid : UU (l1 ⊔ l2) type-subset-Commutative-Monoid = type-subset-Monoid (monoid-Commutative-Monoid M) P is-set-type-subset-Commutative-Monoid : is-set type-subset-Commutative-Monoid is-set-type-subset-Commutative-Monoid = is-set-type-subset-Monoid (monoid-Commutative-Monoid M) P set-subset-Commutative-Monoid : Set (l1 ⊔ l2) set-subset-Commutative-Monoid = set-subset-Monoid (monoid-Commutative-Monoid M) P inclusion-subset-Commutative-Monoid : type-subset-Commutative-Monoid → type-Commutative-Monoid M inclusion-subset-Commutative-Monoid = inclusion-subset-Monoid (monoid-Commutative-Monoid M) P ap-inclusion-subset-Commutative-Monoid : (x y : type-subset-Commutative-Monoid) → x = y → inclusion-subset-Commutative-Monoid x = inclusion-subset-Commutative-Monoid y ap-inclusion-subset-Commutative-Monoid = ap-inclusion-subset-Monoid (monoid-Commutative-Monoid M) P is-in-subset-inclusion-subset-Commutative-Monoid : (x : type-subset-Commutative-Monoid) → is-in-subset-Commutative-Monoid (inclusion-subset-Commutative-Monoid x) is-in-subset-inclusion-subset-Commutative-Monoid = is-in-subset-inclusion-subset-Monoid (monoid-Commutative-Monoid M) P
The condition that a subset contains the unit
contains-unit-subset-commutative-monoid-Prop : Prop l2 contains-unit-subset-commutative-monoid-Prop = contains-unit-subset-monoid-Prop (monoid-Commutative-Monoid M) P contains-unit-subset-Commutative-Monoid : UU l2 contains-unit-subset-Commutative-Monoid = contains-unit-subset-Monoid (monoid-Commutative-Monoid M) P
The condition that a subset is closed under multiplication
is-closed-under-multiplication-subset-commutative-monoid-Prop : Prop (l1 ⊔ l2) is-closed-under-multiplication-subset-commutative-monoid-Prop = is-closed-under-multiplication-subset-monoid-Prop ( monoid-Commutative-Monoid M) ( P) is-closed-under-multiplication-subset-Commutative-Monoid : UU (l1 ⊔ l2) is-closed-under-multiplication-subset-Commutative-Monoid = is-closed-under-multiplication-subset-Monoid (monoid-Commutative-Monoid M) P