Counting in type theory
module univalent-combinatorics.counting where
Imports
open import elementary-number-theory.natural-numbers open import foundation.contractible-types open import foundation.coproduct-types open import foundation.decidable-equality open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equivalences open import foundation.functions open import foundation.homotopies open import foundation.identity-types open import foundation.injective-maps open import foundation.propositional-truncations open import foundation.propositions open import foundation.sets open import foundation.unit-type open import foundation.universe-levels open import univalent-combinatorics.equality-standard-finite-types open import univalent-combinatorics.standard-finite-types
Idea
The elements of a type X
can be counted by establishing an equivalence
Fin n ≃ X
.
Definition
count : {l : Level} → UU l → UU l count X = Σ ℕ (λ k → Fin k ≃ X) module _ {l : Level} {X : UU l} (e : count X) where number-of-elements-count : ℕ number-of-elements-count = pr1 e equiv-count : Fin number-of-elements-count ≃ X equiv-count = pr2 e map-equiv-count : Fin number-of-elements-count → X map-equiv-count = map-equiv equiv-count map-inv-equiv-count : X → Fin number-of-elements-count map-inv-equiv-count = map-inv-equiv equiv-count issec-map-inv-equiv-count : (map-equiv-count ∘ map-inv-equiv-count) ~ id issec-map-inv-equiv-count = issec-map-inv-equiv equiv-count isretr-map-inv-equiv-count : (map-inv-equiv-count ∘ map-equiv-count) ~ id isretr-map-inv-equiv-count = isretr-map-inv-equiv equiv-count inv-equiv-count : X ≃ Fin number-of-elements-count inv-equiv-count = inv-equiv equiv-count is-set-count : is-set X is-set-count = is-set-equiv' ( Fin number-of-elements-count) ( equiv-count) ( is-set-Fin number-of-elements-count)
Properties
The elements of the standard finite types can be counted
count-Fin : (k : ℕ) → count (Fin k) pr1 (count-Fin k) = k pr2 (count-Fin k) = id-equiv
Types equipped with countings are closed under equivalences
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} where abstract equiv-count-equiv : (e : X ≃ Y) (f : count X) → Fin (number-of-elements-count f) ≃ Y equiv-count-equiv e f = e ∘e (equiv-count f) count-equiv : X ≃ Y → count X → count Y pr1 (count-equiv e f) = number-of-elements-count f pr2 (count-equiv e f) = equiv-count-equiv e f abstract equiv-count-equiv' : (e : X ≃ Y) (f : count Y) → Fin (number-of-elements-count f) ≃ X equiv-count-equiv' e f = inv-equiv e ∘e (equiv-count f) count-equiv' : X ≃ Y → count Y → count X pr1 (count-equiv' e f) = number-of-elements-count f pr2 (count-equiv' e f) = equiv-count-equiv' e f count-is-equiv : {f : X → Y} → is-equiv f → count X → count Y count-is-equiv H = count-equiv (pair _ H) count-is-equiv' : {f : X → Y} → is-equiv f → count Y → count X count-is-equiv' H = count-equiv' (pair _ H)
A type as 0 elements if and only if it is empty
abstract is-empty-is-zero-number-of-elements-count : {l : Level} {X : UU l} (e : count X) → is-zero-ℕ (number-of-elements-count e) → is-empty X is-empty-is-zero-number-of-elements-count (pair .zero-ℕ e) refl x = map-inv-equiv e x abstract is-zero-number-of-elements-count-is-empty : {l : Level} {X : UU l} (e : count X) → is-empty X → is-zero-ℕ (number-of-elements-count e) is-zero-number-of-elements-count-is-empty (pair zero-ℕ e) H = refl is-zero-number-of-elements-count-is-empty (pair (succ-ℕ k) e) H = ex-falso (H (map-equiv e (zero-Fin k))) count-is-empty : {l : Level} {X : UU l} → is-empty X → count X pr1 (count-is-empty H) = zero-ℕ pr2 (count-is-empty H) = inv-equiv (pair H (is-equiv-is-empty' H)) count-empty : count empty count-empty = count-Fin zero-ℕ
A type has 1 element if and only if it is contractible
count-is-contr : {l : Level} {X : UU l} → is-contr X → count X pr1 (count-is-contr H) = 1 pr2 (count-is-contr H) = equiv-is-contr is-contr-Fin-one-ℕ H abstract is-contr-is-one-number-of-elements-count : {l : Level} {X : UU l} (e : count X) → is-one-ℕ (number-of-elements-count e) → is-contr X is-contr-is-one-number-of-elements-count (pair .(succ-ℕ zero-ℕ) e) refl = is-contr-equiv' (Fin 1) e is-contr-Fin-one-ℕ abstract is-one-number-of-elements-count-is-contr : {l : Level} {X : UU l} (e : count X) → is-contr X → is-one-ℕ (number-of-elements-count e) is-one-number-of-elements-count-is-contr (pair zero-ℕ e) H = ex-falso (map-inv-equiv e (center H)) is-one-number-of-elements-count-is-contr (pair (succ-ℕ zero-ℕ) e) H = refl is-one-number-of-elements-count-is-contr (pair (succ-ℕ (succ-ℕ k)) e) H = ex-falso ( Eq-Fin-eq (succ-ℕ (succ-ℕ k)) ( is-injective-map-equiv e ( eq-is-contr' H ( map-equiv e (zero-Fin (succ-ℕ k))) ( map-equiv e (neg-one-Fin (succ-ℕ k)))))) count-unit : count unit count-unit = count-is-contr is-contr-unit
Types with a count have decidable equality
has-decidable-equality-count : {l : Level} {X : UU l} → count X → has-decidable-equality X has-decidable-equality-count (pair k e) = has-decidable-equality-equiv' e (has-decidable-equality-Fin k)
This with a count are either inhabited or empty
is-inhabited-or-empty-count : {l1 : Level} {A : UU l1} → count A → is-inhabited-or-empty A is-inhabited-or-empty-count (pair zero-ℕ e) = inr (is-empty-is-zero-number-of-elements-count (pair zero-ℕ e) refl) is-inhabited-or-empty-count (pair (succ-ℕ k) e) = inl (unit-trunc-Prop (map-equiv e (zero-Fin k)))
If the elements of a type can be counted, then the elements of its propositional truncation can be counted
count-type-trunc-Prop : {l1 : Level} {A : UU l1} → count A → count (type-trunc-Prop A) count-type-trunc-Prop (pair zero-ℕ e) = count-is-empty ( is-empty-type-trunc-Prop ( is-empty-is-zero-number-of-elements-count (pair zero-ℕ e) refl)) count-type-trunc-Prop (pair (succ-ℕ k) e) = count-is-contr ( is-proof-irrelevant-is-prop ( is-prop-type-trunc-Prop) ( unit-trunc-Prop (map-equiv e (zero-Fin k))))