Finite posets
module order-theory.finite-posets where
Imports
open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.propositions open import foundation.universe-levels open import order-theory.finite-preorders open import order-theory.posets open import univalent-combinatorics.finite-types
Definitions
A finite poset is a poset of which the underlying type is finite, and of which the ordering relation is decidable.
module _ {l1 l2 : Level} (P : Poset l1 l2) where is-finite-Poset-Prop : Prop (l1 ⊔ l2) is-finite-Poset-Prop = is-finite-Preorder-Prop (preorder-Poset P) is-finite-Poset : UU (l1 ⊔ l2) is-finite-Poset = is-finite-Preorder (preorder-Poset P) is-prop-is-finite-Poset : is-prop is-finite-Poset is-prop-is-finite-Poset = is-prop-is-finite-Preorder (preorder-Poset P) is-finite-type-is-finite-Poset : is-finite-Poset → is-finite (type-Poset P) is-finite-type-is-finite-Poset = is-finite-type-is-finite-Preorder (preorder-Poset P) is-decidable-leq-is-finite-Poset : is-finite-Poset → (x y : type-Poset P) → is-decidable (leq-Poset P x y) is-decidable-leq-is-finite-Poset = is-decidable-leq-is-finite-Preorder (preorder-Poset P) Poset-𝔽 : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Poset-𝔽 l1 l2 = Σ ( Preorder-𝔽 l1 l2) ( λ P → is-antisymmetric-leq-Preorder (preorder-Preorder-𝔽 P))