Chains in posets
module order-theory.chains-posets where
Imports
open import foundation.propositions open import foundation.universe-levels open import order-theory.chains-preorders open import order-theory.posets
Idea
A chain in a poset P
is a subtype S
of P
such that the ordering of P
restricted to S
is linear.
Definition
module _ {l1 l2 : Level} (X : Poset l1 l2) where is-chain-Subposet-Prop : {l3 : Level} (S : type-Poset X → Prop l3) → Prop (l1 ⊔ l2 ⊔ l3) is-chain-Subposet-Prop = is-chain-Subpreorder-Prop (preorder-Poset X) is-chain-Subposet : {l3 : Level} (S : type-Poset X → Prop l3) → UU (l1 ⊔ l2 ⊔ l3) is-chain-Subposet = is-chain-Subpreorder (preorder-Poset X) is-prop-is-chain-Subposet : {l3 : Level} (S : type-Poset X → Prop l3) → is-prop (is-chain-Subposet S) is-prop-is-chain-Subposet = is-prop-is-chain-Subpreorder (preorder-Poset X) chain-Poset : {l1 l2 : Level} (l : Level) (X : Poset l1 l2) → UU (l1 ⊔ l2 ⊔ lsuc l) chain-Poset l X = chain-Preorder l (preorder-Poset X) module _ {l1 l2 l3 : Level} (X : Poset l1 l2) (C : chain-Poset l3 X) where sub-preorder-chain-Poset : type-Poset X → Prop l3 sub-preorder-chain-Poset = sub-preorder-chain-Preorder (preorder-Poset X) C type-chain-Poset : UU (l1 ⊔ l3) type-chain-Poset = type-chain-Preorder (preorder-Poset X) C module _ {l1 l2 : Level} (X : Poset l1 l2) where inclusion-chain-Poset-Prop : {l3 l4 : Level} → chain-Poset l3 X → chain-Poset l4 X → Prop (l1 ⊔ l3 ⊔ l4) inclusion-chain-Poset-Prop = inclusion-chain-Preorder-Prop (preorder-Poset X) inclusion-chain-Poset : {l3 l4 : Level} → chain-Poset l3 X → chain-Poset l4 X → UU (l1 ⊔ l3 ⊔ l4) inclusion-chain-Poset = inclusion-chain-Preorder (preorder-Poset X) is-prop-inclusion-chain-Poset : {l3 l4 : Level} (C : chain-Poset l3 X) (D : chain-Poset l4 X) → is-prop (inclusion-chain-Poset C D) is-prop-inclusion-chain-Poset = is-prop-inclusion-chain-Preorder (preorder-Poset X)