Raising universe levels
module foundation.raising-universe-levels where
Imports
open import foundation-core.dependent-pair-types open import foundation-core.equivalences open import foundation-core.functions open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.sets open import foundation-core.universe-levels
Idea
In Agda, types have a designated universe levels, and universes in Agda don't
overlap. Using data
types we can construct for any type A
of universe level
l
an equivalent type in any higher universe.
Definition
data raise (l : Level) {l1 : Level} (A : UU l1) : UU (l1 ⊔ l) where map-raise : A → raise l A data raiseω {l1 : Level} (A : UU l1) : UUω where map-raiseω : A → raiseω A
Properties
Types are equivalent to their raised equivalents
module _ {l l1 : Level} {A : UU l1} where map-inv-raise : raise l A → A map-inv-raise (map-raise x) = x issec-map-inv-raise : (map-raise ∘ map-inv-raise) ~ id issec-map-inv-raise (map-raise x) = refl isretr-map-inv-raise : (map-inv-raise ∘ map-raise) ~ id isretr-map-inv-raise x = refl is-equiv-map-raise : is-equiv (map-raise {l} {l1} {A}) is-equiv-map-raise = is-equiv-has-inverse map-inv-raise issec-map-inv-raise isretr-map-inv-raise compute-raise : (l : Level) {l1 : Level} (A : UU l1) → A ≃ raise l A pr1 (compute-raise l A) = map-raise pr2 (compute-raise l A) = is-equiv-map-raise Raise : (l : Level) {l1 : Level} (A : UU l1) → Σ (UU (l1 ⊔ l)) (λ X → A ≃ X) pr1 (Raise l A) = raise l A pr2 (Raise l A) = compute-raise l A
Raising universe levels of propositions
raise-Prop : (l : Level) {l1 : Level} → Prop l1 → Prop (l ⊔ l1) pr1 (raise-Prop l P) = raise l (type-Prop P) pr2 (raise-Prop l P) = is-prop-equiv' (compute-raise l (type-Prop P)) (is-prop-type-Prop P)
Raising universe levels of sets
raise-Set : (l : Level) {l1 : Level} → Set l1 → Set (l ⊔ l1) pr1 (raise-Set l A) = raise l (type-Set A) pr2 (raise-Set l A) = is-set-equiv' (type-Set A) (compute-raise l (type-Set A)) (is-set-type-Set A)
Raising equivalent types
module _ {l1 l2 : Level} (l3 l4 : Level) {A : UU l1} {B : UU l2} (e : A ≃ B) where map-equiv-raise : raise l3 A → raise l4 B map-equiv-raise (map-raise x) = map-raise (map-equiv e x) map-inv-equiv-raise : raise l4 B → raise l3 A map-inv-equiv-raise (map-raise y) = map-raise (map-inv-equiv e y) issec-map-inv-equiv-raise : ( map-equiv-raise ∘ map-inv-equiv-raise) ~ id issec-map-inv-equiv-raise (map-raise y) = ap map-raise (issec-map-inv-equiv e y) isretr-map-inv-equiv-raise : ( map-inv-equiv-raise ∘ map-equiv-raise) ~ id isretr-map-inv-equiv-raise (map-raise x) = ap map-raise (isretr-map-inv-equiv e x) is-equiv-map-equiv-raise : is-equiv map-equiv-raise is-equiv-map-equiv-raise = is-equiv-has-inverse map-inv-equiv-raise issec-map-inv-equiv-raise isretr-map-inv-equiv-raise equiv-raise : raise l3 A ≃ raise l4 B pr1 equiv-raise = map-equiv-raise pr2 equiv-raise = is-equiv-map-equiv-raise