An involution on the standard finite types
module univalent-combinatorics.involution-standard-finite-types where
Imports
open import elementary-number-theory.modular-arithmetic-standard-finite-types open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.involutions open import univalent-combinatorics.standard-finite-types
Idea
Every standard finite type Fin k
has an involution operation given by
x ↦ -x - 1
, using the group operations on Fin k
.
Definition
opposite-Fin : (k : ℕ) → Fin k → Fin k opposite-Fin k x = pred-Fin k (neg-Fin k x)
Properties
The opposite function on Fin k
is an involution
is-involution-opposite-Fin : (k : ℕ) → is-involution (opposite-Fin k) is-involution-opposite-Fin k x = ( ap (pred-Fin k) (neg-pred-Fin k (neg-Fin k x))) ∙ ( ( isretr-pred-Fin k (neg-Fin k (neg-Fin k x))) ∙ ( neg-neg-Fin k x))