The universal property of coproduct types

module foundation.universal-property-coproduct-types where
Imports
open import foundation.equivalences
open import foundation.function-extensionality

open import foundation-core.cartesian-product-types
open import foundation-core.coproduct-types
open import foundation-core.dependent-pair-types
open import foundation-core.equality-cartesian-product-types
open import foundation-core.functions
open import foundation-core.identity-types
open import foundation-core.universe-levels

Idea

The universal property and dependent universal property of coproduct types characterize maps and dependent functions out of coproduct types.

module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2}
  where

  ev-inl-inr :
    {l3 : Level} (P : A + B  UU l3) 
    ((t : A + B)  P t)  ((x : A)  P (inl x)) × ((y : B)  P (inr y))
  ev-inl-inr P s = pair  x  s (inl x))  y  s (inr y))

  dependent-universal-property-coprod :
    {l3 : Level} (P : A + B  UU l3)  is-equiv (ev-inl-inr P)
  dependent-universal-property-coprod P =
    is-equiv-has-inverse
      ( λ p  ind-coprod P (pr1 p) (pr2 p))
      ( ind-Σ  f g  eq-pair refl refl))
      ( λ s  eq-htpy (ind-coprod _  x  refl) λ y  refl))

  equiv-dependent-universal-property-coprod :
    {l3 : Level} (P : A + B  UU l3) 
    ((x : A + B)  P x)  (((a : A)  P (inl a)) × ((b : B)  P (inr b)))
  pr1 (equiv-dependent-universal-property-coprod P) = ev-inl-inr P
  pr2 (equiv-dependent-universal-property-coprod P) =
    dependent-universal-property-coprod P

  abstract
    universal-property-coprod :
      {l3 : Level} (X : UU l3) 
      is-equiv (ev-inl-inr  (t : A + B)  X))
    universal-property-coprod X = dependent-universal-property-coprod  t  X)

  equiv-universal-property-coprod :
    {l3 : Level} (X : UU l3) 
    (A + B  X)  ((A  X) × (B  X))
  equiv-universal-property-coprod X =
    equiv-dependent-universal-property-coprod  t  X)

  abstract
    uniqueness-coprod :
      {l3 : Level} {Y : UU l3} (i : A  Y) (j : B  Y) 
      ((l : Level) (X : UU l) 
        is-equiv  (s : Y  X)  pair' (s  i) (s  j))) 
      is-equiv (ind-coprod  t  Y) i j)
    uniqueness-coprod {Y = Y} i j H =
      is-equiv-is-equiv-precomp
        ( ind-coprod _ i j)
        ( λ l X  is-equiv-right-factor
          ( ev-inl-inr  t  X))
          ( precomp (ind-coprod  t  Y) i j) X)
          ( universal-property-coprod X)
          ( H _ X))

  abstract
    universal-property-coprod-is-equiv-ind-coprod :
      {l3 : Level} (X : UU l3) (i : A  X) (j : B  X) 
      is-equiv (ind-coprod  t  X) i j) 
      (l4 : Level) (Y : UU l4) 
        is-equiv  (s : X  Y)  pair' (s  i) (s  j))
    universal-property-coprod-is-equiv-ind-coprod X i j H l Y =
      is-equiv-comp
        ( ev-inl-inr  t  Y))
        ( precomp (ind-coprod  t  X) i j) Y)
        ( is-equiv-precomp-is-equiv
          ( ind-coprod  t  X) i j)
          ( H)
          ( Y))
        ( universal-property-coprod Y)