Bottom elements in posets
module order-theory.bottom-elements-posets where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.bottom-elements-preorders open import order-theory.posets
Idea
A bottom element in a poset P
is an element b
such that b ≤ x
holds
for every element x : P
.
Definition
module _ {l1 l2 : Level} (X : Poset l1 l2) where is-bottom-element-Poset-Prop : type-Poset X → Prop (l1 ⊔ l2) is-bottom-element-Poset-Prop = is-bottom-element-Preorder-Prop (preorder-Poset X) is-bottom-element-Poset : type-Poset X → UU (l1 ⊔ l2) is-bottom-element-Poset = is-bottom-element-Preorder (preorder-Poset X) is-prop-is-bottom-element-Poset : (x : type-Poset X) → is-prop (is-bottom-element-Poset x) is-prop-is-bottom-element-Poset = is-prop-is-bottom-element-Preorder (preorder-Poset X) has-bottom-element-Poset : UU (l1 ⊔ l2) has-bottom-element-Poset = has-bottom-element-Preorder (preorder-Poset X) all-elements-equal-has-bottom-element-Poset : all-elements-equal has-bottom-element-Poset all-elements-equal-has-bottom-element-Poset (pair x H) (pair y K) = eq-type-subtype ( is-bottom-element-Poset-Prop) ( antisymmetric-leq-Poset X x y (H y) (K x)) is-prop-has-bottom-element-Poset : is-prop has-bottom-element-Poset is-prop-has-bottom-element-Poset = is-prop-all-elements-equal all-elements-equal-has-bottom-element-Poset has-bottom-element-Poset-Prop : Prop (l1 ⊔ l2) pr1 has-bottom-element-Poset-Prop = has-bottom-element-Poset pr2 has-bottom-element-Poset-Prop = is-prop-has-bottom-element-Poset